MAE/MSE 502 Partial Differential Equations in Engineering

Spring 2014 Monday/Wednesday 6:00-7:15 PM, PSF 173

Instructor: Huei-Ping Huang (hp.huang@asu.edu), ERC 359 Office hours: Tuesday 3-5 PM, Wednesday 2-3 PM, or by appointment

Course website http://www.public.asu.edu/~hhuang38/MAE502.html

Course Outline

I. Analytic treatment for linear PDE

1. Overview of PDE

Commonly encountered PDEs in engineering and science

Types of PDEs, the physical phenomena they represent, and relevant boundary conditions

- 2. Method of separation of variables; eigenfunction expansion
- 3. Fourier Series

Solution of ODE and PDE by Fourier Series expansion

4. Short review of Sturm-Louville Problem and orthogonal functions;

Representation using orthogonal basis

5. Fourier transform

Solution of PDE by Fourier transform; Behavior of solution in spectral space

- 6. PDE in non-Cartesian geometry
- 7. Forced problem and brief introduction to Green's function

II. Additional topics

- 8. Comparison of numerical and analytic methods for Laplace's equation and heat equation
- 9. Very brief introduction to nonlinear PDE

Examples of nonlinear PDEs for real world phenomena; Behavior of their solutions; Conservation laws

- 10. Method of cheracteristics; Solutions of nonlinear/quasilinear equations.
- 11. Miscellanies (while time allows)

Textbook: Applied Partial Differential Equation, by R. Haberman, Required

Additional lecture notes/slides will be provided by instructor

Grade: Homework 50% Midterm 20% Final 30%

Useful links

ASU policy on academic integrity: https://provost.asu.edu/academicintegrity

Campus safety and security: https://provost.asu.edu/University-Safety-Security

Grade and grading policies: https://students.asu.edu/grades
Counseling and consultation: https://students.asu.edu/counseling

SEMTE advising: http://engineering.asu.edu/semte/Advising.html

ASU common software/applications portal: https://apps.asu.edu (login required)

MATLAB searchable online documentation: http://www.mathworks.com/help/techdoc/?s iid=ML2013 bb doc

MATLAB online tutorial: http://www.mathworks.com/products/matlab/examples.html