Prob 1
(a) The solution is

$$
u(x, t)=2+\ln (1+t)+\left[\mathrm{e}^{-\pi^{2} t}+\frac{\mathrm{e}^{-t}-\mathrm{e}^{-\pi^{2} t}}{\pi^{2}-1}\right] \cos (\pi x)+\mathrm{e}^{-4 \pi^{2} t} \cos (2 \pi x)
$$

(b) The solution in Part (a) does not have a steady state because $\ln (1+t) \rightarrow \infty$ as $t \rightarrow \infty$. All other terms in the solution either stay finite or decay to zero as $t \rightarrow \infty$. If the term, $1 /(1+t)$, in the r.h.s. of the PDE is replaced by $1 /(1+t)^{2}$, the solution will be similar to that obtained in Part (a) except that " $2+\ln (1+t)$ " is replaced by " $3-1 /(1+t)$ ". Since this term approaches a constant of 3 as $t \rightarrow \infty$, the new system has a steady state solution, $u(x, t)=3$ as $t \rightarrow \infty$.

Prob 2
(a) The eigenvalues are $c_{n}=-1-(n \pi)^{2}, n=1,2,3 \ldots$, and the corresponding eigenfunctions are

$$
G_{n}(x)=e^{-x} \sin (n \pi x), n=1,2,3, \ldots
$$

(b) Plot of the first 3 eigenfunctions (normalized as per the instruction in the handout):

(c) The integral,

$$
\int_{0}^{1} G_{n}(x) G_{m}(x) d x=\int_{0}^{1} \mathrm{e}^{-2 x} \sin (n \pi x) \sin (m \pi x) d x \neq 0, \text { when } n \neq m
$$

Therefore, the eigenfunctions of this system do not satisfy the orthogonality relation.

Prob 3
The solution is

$$
u(x, y)=u_{1}(x, y)+u_{2}(x, y)
$$

where

$$
\begin{aligned}
& u_{1}(x, y)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \sinh (\sqrt{2} n \pi y) \\
& u_{2}(x, y)=\sum_{n=1}^{\infty} b_{n} \sinh \left(\frac{n \pi x}{\sqrt{2}}\right) \sin (n \pi y)
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{n}=\frac{2}{\sinh (\sqrt{2} n \pi)} \int_{0}^{1}(\sqrt{x}-x) \sin (n \pi x) d x \\
& b_{n}=\frac{2}{\sinh (n \pi / \sqrt{2})} \int_{0}^{1}\left(y-y^{2}\right) \sin (n \pi y) d y .
\end{aligned}
$$

Plot of the solution (with a truncation at 20 terms in both x - and y -direction):

$u(0.4,0.6)=0.0936$

