MAE/MSE502 Fall 2015 Homework \#3

Prob. 1 (1.5 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 4$ and $t \geq 0$, consider the 1 -D Wave equation,

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions,
(i) $u(0, t)=0$,
(ii) $u(4, t)=0$,
(iii) $u(x, 0)=\mathrm{P}(x)$,
(iv) $u_{t}(x, 0)=0$.

Solve the system for the two cases with
(a) $\mathrm{P}(x)=\sqrt{x}-\frac{x}{2}$
(b) $\mathrm{P}(x)=x \quad$, if $0 \leq \mathrm{x} \leq 1$ $=(4-x) / 3$, if $1<\mathrm{x} \leq 4$

For each case, plot the solution as a function of x at $t=0,1.2,2,2.8,4$, and 7.2. Please collect all 6 curves in one plot.

Prob. 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+1+\mathrm{e}^{-t} \sin (2 x)
$$

with the boundary conditions,
(i) $u(0, t)=u(2 \pi, t)$
(ii) $u_{x}(0, t)=u_{x}(2 \pi, t)$
(iii) $u(x, 0)=2$
(iv) $u_{t}(x, 0)=3+\cos (x)$.

We expect a closed form solution with no unevaluated integral or summation of infinite series. Otherwise, no need to make any plot.

Prob 3 (1.5 points)
For $u(x, y, t)$ defined on the domain of $x^{2}+y^{2} \leq 1$ (a circular disk, see figure below) and $t \geq 0$, consider the modified 2-D Heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}-u
$$

with the boundary conditions,
(i) $\hat{n} \cdot \nabla u=2$, at $x^{2}+y^{2}=1$ (i.e., the circular boundary) where \hat{n} is the outward unit normal vector at the boundary.
(ii) $u(x, y, 0)=x^{2}+y^{2}$.

The total energy of the system is defined as

$$
E(t) \equiv \iint_{A} u(x, y, t) d A
$$

where the integral is over the whole circular domain.
Use the given information to evaluate $E(t)$ at $t=1$ and as $t \rightarrow \infty$.
[Note: For this problem, all you are asked to do is to evaluate $E(t)$. You may or may not need to find the full solution, $u(x, y, t)$.]

Prob 4 (3 points)

For $u(x, y, t)$ defined on the domain of $0 \leq x \leq 1,0 \leq y \leq 1$, and $t \geq 0$, solve the PDE

$$
(1+t) \frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial y^{2}}=0
$$

with the boundary conditions,
(i) $u_{x}(0, y, t)=0$
(i) $u_{x}(1, y, t)=0$
(i) $u(x, 0, t)=0$
(i) $u(x, 1, t)=0$
(i) $u(x, y, 0)=\sin (\pi y)[2+\cos (\pi x)]$.

We expect a closed form solution with no unevaluated integral or summation of infinite series.

