MAE/MSE502 Fall 2015 Homework \#4

You may find the following formula useful:

$$
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} \mathrm{e}^{-b^{2}}
$$

In Prob 2, it can be used to evaluate the forward Fourier transform. (The inverse transform for that problem would rely on numerical integration.) For Prob 3 and 4, it can be applied twice in both forward and inverse Fourier transform to produce a close-form solution.

Prob 1 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{3} u}{\partial x^{3}}-0.1 \frac{\partial^{4} u}{\partial x^{4}}
$$

with the boundary conditions (the first 4 conditions simply indicate that the system is periodic in the x direction):
(i) $u(0, t)=u(2 \pi, t)$, (ii) $u_{x}(0, t)=u_{x}(2 \pi, t)$, (iii) $u_{x x}(0, t)=u_{x x}(2 \pi, t)$, (iv) $u_{x x x}(0, t)=u_{x x x}(2 \pi, t)$
(v) $u(x, 0)=\cos (x)+\sin (2 x)$.

We expect a closed-form solution without any unevaluated integral(s) or summation of infinite series.
Prob 2 (4 points)
For $u(x, t)$ defined on the infinite domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE

$$
\frac{\partial u}{\partial t}=-\frac{\partial^{4} u}{\partial x^{4}}+\exp \left[-\left(x^{2}+t\right)\right]
$$

with the boundary conditions:
(i) $u(x, t)$ and its partial derivatives in x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=\exp \left[-(x-3)^{2}\right]$.

It is acceptable to express the solution as an integral. Plot the solution as a function of x at $t=0,0.3$, and 2. Please collect all 3 curves in one plot.

Note: For this problem, numerical integration (e.g., by the trapezoidal method) might be needed to evaluate $u(x, t)$ for the plot. Since numerical integration cannot go all the way to ∞, one has to "truncate" the integral at a finite value of ω. This is analogous to truncating a Fourier series at a finite n. A useful way to determine where to truncate the integral is to plot, for a give $t, U(\omega, t)($ the Fourier transform of $u(x, t))$ as a function of ω and observe how $U(\omega, t)$ decays with ω.

Prob 3 (1.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the method of Fourier transform to solve the PDE

$$
\frac{\partial u}{\partial t}=(1+2 t) \frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions:
(i) $u(x, t)$ and its partial derivatives in x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=\exp \left(-x^{2}\right)$.

To receive full credit, the final solution should have a closed-form expression of a real function which contains no unevaluated integral(s).

Prob 4 (1.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the method of Fourier transform to solve the PDE

$$
\frac{\partial u}{\partial t}=3 \frac{\partial u}{\partial x}-\frac{u}{1+t}
$$

with the boundary conditions:
(i) $u(x, t)$ and its partial derivatives in x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=\exp \left(-x^{2}\right)$.

To receive full credit, the final solution should have a closed-form expression of a real function which contains no unevaluated integral(s). Plot the solution, $u(x, t)$, as a function of x at $t=0,0.5$, and 1 . Please collect all 3 curves in a single plot.

