Prob 1

$$
\begin{aligned}
u(x, t) & =\frac{x-t}{1+t} \quad, \text { if } t \leq x<1+2 t \\
& =\frac{1}{2}\left(3-\frac{x-2.5 t}{1-0.5 t}\right), \text { if } 1+2 t \leq x \leq 3+t \\
& =0 \quad, \text { otherwise } .
\end{aligned}
$$

Finite-time blowup occurs when the second segment with $1+2 t \leq x \leq 3+t$ becomes vertical, i.e., its "shadow" on the x -axis is reduced to a point. This means $1+2 t=3+t$. So, the critical time is $\underline{t=2}$.

Plot of solution:

Prob 1, Plot of characteristics:

Prob 2
$u(x, t)=\exp \left(-x_{0}^{2}-t\right)$, where x_{0} is determined numerically from
$x=x_{0}+2 \exp \left(-x_{0}^{2}\right)[1-\exp (-t)]$.
Plot:

Prob 3
$u(x, y, t)=\exp \left[-\left\{(x \exp (-t))^{2}+\left(y-t^{2} / 2\right)^{2}\right\}+2 t\right]$

Prob 4

$$
u(x, t)=\frac{1}{1+t} \exp \left[-\left(\frac{x}{1+t}\right)^{2}+t\right]
$$

Prob 5
$G\left(t, t^{\prime}\right)=\exp \left[-\left(3 t+t^{2} / 2\right)+\left(3 t^{\prime}+t^{\prime 2} / 2\right)\right]$

