MAE/MSE502 Spring 2015 Homework \#2

Prob 1 (4 points)

For $u(x, y)$ defined on the square domain of $0 \leq x \leq 1$ and $0 \leq y \leq 1$, solve the slightly modified Laplace's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial y^{2}}=0
$$

with the boundary conditions,
(i) $u(0, y)=0$
(ii) $u(1, y)=y-y^{3}$
(iii) $u(x, 0)=x-x^{2}$
(iv) $u(x, 1)=0$.

Make a contour plot of your solution. Based on the solution, evaluate $u(x, y)$ at $x=0.7, y=0.4$. (Major deduction if this value is not calculated.) See Additional Note at the end of this assignment for an example on how to make a contour plot using Matlab.

Prob 2 (2 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 10$ and $t \geq 0$, solve the Wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions,
(i) $u(0, t)=0$
(ii) $u(10, t)=0$
(iii) $u(x, 0)=\mathrm{P}(x)$
(iv) $u_{t}(x, 0)=0 \quad\left(u_{t}\right.$ is $\left.\partial u / \partial t\right)$,
where

$$
\begin{aligned}
\mathrm{P}(x) & =x \quad, \text { if } 0 \leq x \leq 8 \\
& =40-4 x, \text { if } 8<x \leq 10 .
\end{aligned}
$$

Plot the solution as a function of x at $t=0,3,5,7,10$, and 18 . Please put all 6 curves in one plot.

Prob 3 (3 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\pi^{2} u
$$

with the boundary conditions,
(i) $u_{x}(0, t)=0 \quad$ (ii) $u_{x}(1, t)=0$
(iii) $u(x, 0)=1+2 \cos (\pi x)+3 \cos (5 \pi x)$
(iv) $u_{t}(x, 0)=4+5 \cos (\pi x)+6 \cos (5 \pi x)$

For this problem, we expect a closed-form analytic solution without any unevaluated integral or infinite series. A deduction will be assessed for any such items that are left untreated in the final answer. No need to make any plot for this problem.

Additional Note: Using Matlab to make a contour plot

The following Matlab code makes a contour plot for $u(x, y)=\sin (2 \pi x) \exp (-2 y)$ for the domain of $0 \leq x \leq 1$ and $0 \leq y \leq 1$, using the contour levels of ($-0.9,-0.7,-0.5,-0.3,-0.1,-0.05,0.05,0.1,0.3,0.5,0.7,0.9$). The contours for $u=-0.7,-0.3,0.3$, and 0.7 are labeled. It is essential to provide the coordinates of the grid (x 2 d and y 2 d in this example) as the input for the contour function. Without this piece of information, Matlab would not know the grid spacing and the correct directions of x and y. A black-and-white contour plot is acceptable as long as the contours are properly labeled. For Prob 1, the recommended contour interval is 0.03 .

```
clear
x = [0:0.01:1]; y = [0:0.01:1];
for i = 1:length(x)
    for j = 1:length(y)
                u(i,j) = sin(2*pi*x(i))*exp(-2*y(j));
        x2d(i,j) = x(i);
        y2d(i,j) = y(j);
        end
end
[C,h] = contour(x2d,y2d,u,[-0.9:0.2:-0.1 -0.05 0.05 0.1:0.2:0.9]);
clabel(C,h,[-0.7 -0.3 0.3 0.7])
xlabel('x'); ylabel('y')
```


