Solutions

Prob 1

$$
u(x, t)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \mathrm{e}^{-\left(\omega^{2} / 4+\omega^{2} t\right)} \cos \left(\omega x+2 \omega t-2 \omega^{3} t\right) d \omega
$$

The integration can be carried out numerically.
Plot:

Prob 2

$$
u(x, t)=2 \int_{0}^{\infty} R e\left[U(\omega, t) \mathrm{e}^{i \omega x}\right] d \omega
$$

where

$$
U(\omega, t)=\frac{\mathrm{e}^{-\omega^{2} / 4+\alpha(\omega) t}}{2 \sqrt{\pi}}\left[1+\frac{1-\mathrm{e}^{-(1+\alpha(\omega)) t}}{1+\alpha(\omega)}\right],
$$

and

$$
\alpha(\omega) \equiv i 2 \omega-0.2 \omega^{2}
$$

The integration can be carried out numerically.

Plot:

Prob 3

$$
u(x, t)=\mathrm{e}^{-(x+5 t)^{2}-t^{2} / 2}
$$

Needs to solve the problem using the Fourier transform method with correct procedure to receive credit.

