MAE/MSE 502, Spring 2015 Homework \#6

Prob 1

For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, consider the PDE,

$$
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}+u \frac{\partial u}{\partial x}=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

(a) (1.5 points) Solve $u(x, t)$ for the case with

$$
\begin{aligned}
\mathrm{P}(x) & =1, & & \text { if } x<0 \\
& =1+x, & & \text { if } 0 \leq x \leq 1 \\
& =2, & & \text { if } x>1
\end{aligned}
$$

Plot $u(x, t)$ as a function of x at $t=0,0.5$, and 1. (For $t=0$, you can just use the given $\mathrm{P}(x)$ for the plot.) In addition, make a plot of selected characteristics in the $x-t$ plane and use it to discuss the properties of the solution.
(b) (2 points) Solve $u(x, t)$ for the case with

$$
\begin{aligned}
\mathrm{P}(x) & =x-x^{2}, & & \text { f } 0 \leq x \leq 1 \\
& =0, & & \text { otherwise }
\end{aligned}
$$

Plot $u(x, t)$ as a function of x at $t=0,0.5$, and 1 . (For $t=0$, you can just use the given $\mathrm{P}(x)$ for the plot.) In addition, make a plot of selected characteristics in the $x-t$ plane and use it to discuss the properties of the solution. Would the solution become multiple-valued within a finite time? If so, what is the critical value of t beyond which $u(x, t)$ becomes multiple-valued?

Prob 2 (0.5 point)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}+x t \frac{\partial u}{\partial x}=x t u
$$

with the boundary condition,

$$
u(x, 0)=\exp \left(-x^{2}\right)
$$

Prob 3 (0.5 point)
For $u(x, y, t)$ defined on the domain of $-\infty<x<\infty,-\infty<y<\infty$, and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=t
$$

with the boundary condition,

$$
u(x, y, 0)=\exp \left[-\left(x^{2}+y^{2}\right)\right]
$$

Prob 4 (1.5 point)
Consider the following PDE for $u(x, t)$ defined on the infinite domain of $-\infty<x<\infty$ and $t \geq 0$,

$$
\frac{\partial u}{\partial t}=-3 t u+Q(t)
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

Find the Green's function, $G\left(t, t^{\prime}\right)$, such that for any given $Q(t)$ and $\mathrm{P}(x)$ the solution of the system can be expressed as

$$
u(x, t)=G(t, 0) P(x)+\int_{0}^{t} G\left(t, t^{\prime}\right) Q\left(t^{\prime}\right) d t^{\prime}
$$

