MAE/MSE 502, Spring 2016, Homework \#3

Please submit the printout of computer code(s) used in your work.
Prob. 1 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}
$$

with the boundary conditions (the first four simply indicate that the system is periodic in the x direction),
(i) $u(0, t)=u(2 \pi, t)$
(ii) $u_{x}(0, t)=u_{x}(2 \pi, t)$
(iii) $u_{x x}(0, t)=u_{x x}(2 \pi, t)$
(iv) $u_{x x x}(0, t)=u_{x x x}(2 \pi, t)$
(v) $u(x, 0)=3$
(vi) $u_{t}(x, 0)=5+\cos (x)+\sin (2 x)$.

For this problem, we expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals.

Prob. 2 (4 points)
(a) For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+E \frac{\partial^{3} u}{\partial x^{3}}
$$

with the boundary conditions (the first three simply indicate that the system is periodic in the x direction)
(i) $u(0, t)=u(2 \pi, t)$
(ii) $u_{x}(0, t)=u_{x}(2 \pi, t)$
(iii) $u_{x x}(0, t)=u_{x x}(2 \pi, t)$
(v) $u(x, 0)=\exp \left([1-\cos (x)]^{2}\right)$,
with $D=0$ and $E=1$. Plot the solution, $u(x, t)$, as a function of x at $t=0,1$, and 2 . Please collect all three curves in one plot.
(b) Repeat (a) but for the case with $D=0.2$ and $E=1$.
(c) Repeat (a) but for the case with $D=0$ and $E=-1$.
(d) Briefly discuss how the values (and signs) of D and E control the qualitative behavior of the solution of the system.

We expect the solution to be expressed as an infinite series. See relevant remarks below HW1Prob 1 concerning the computation of the series.

Prob. 3 (3 points)
Consider the function defined on the interval of $0 \leq x \leq 1$ as (see sketch at right)

$$
\begin{aligned}
f(x) & =0.5+x, \quad 0 \leq x \leq 0.5 \\
& =1-x, \quad 0.5<x \leq 1
\end{aligned}
$$

Denote the Fourier Cosine series expansion of $f(x)$ as

$$
F_{C}(x)=\sum_{n=0}^{\infty} a_{n} \cos (n \pi x)
$$

and Fourier Sine series expansion of $f(x)$ as

$$
F_{S}(x)=\sum_{n=1}^{\infty} b_{n} \sin (n \pi x)
$$

(a) Plot the original $f(x)$ and its Fourier Cosine series representation, $F_{\mathrm{C}}(x)$, truncated (inclusively) at $n=5,10$, and 30. Please collect all four curves in a single plot.
(b) Define $S(\mathrm{~N})$ as the value of $F_{\mathrm{C}}(0.5)$ (i.e., the value of the Fourier Cosine series at $x=0.5$) truncated (inclusively) at $n=\mathrm{N}$, plot $S(\mathrm{~N})$ as a function of N over the range of $1 \leq \mathrm{N} \leq 100$. What value does $S(\mathrm{~N})$ converge to at large N ?
(c) Repeat (a) but now plot the original function $f(x)$ and its Fourier Sine series representation, $F_{S}(x)$. Compared to the Fourier Cosine series in (a), is Fourier Sine series a better or worse representation of $f(x)$? Briefly explain why.

Prob. 4 (1 point)
(a) Given the following function defined on the semi-infinite interval, $0 \leq x<\infty$,

$$
\begin{align*}
f(x) & =1, \tag{1}\\
& =0, \text { if } 0 \leq x \leq 1, \\
& \text { if } x>1,
\end{align*}
$$

determine the Fourier Sine transform of $f(x), F(\omega)$, that satisfies

$$
f(x)=\int_{0}^{\infty} F(\omega) \sin (\omega x) d \omega
$$

Plot $F(\omega)$ as a function of ω for the range of $0 \leq \omega \leq 30$.
(b) If the $f(x)$ in Eq. (1) is instead defined on a finite interval, $0 \leq x \leq L$ (but otherwise retaining its definition in Eq. (1), i.e., $f(x)=0$ if $1<x \leq L$), find the coefficients, a_{n}, for the Fourier Sine series of $f(x)$,

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

Plot a_{n} as a function of n for the following cases: (i) For $L=2$, plot a_{n} over the range of $1 \leq n<60 / \pi$. (ii) For $L=5$, plot a_{n} for $1 \leq n<150 / \pi$. (iii) For $L=100$, plot a_{n} for $1 \leq n<3000 / \pi$. Compare these plots with the plot of $F(\omega)$ in Part (a). Discuss your results.
(Note: This exercise illustrates the correspondence between Fourier series and Fourier integral. When making the plots, be aware that the " n " in Part (b) is an integer while the " ω " in Part (a) can be any real number.)

