MAE/MSE 502, Spring 2016, HW3 Solutions
Prob 1

$$
u(x, t)=5 t+3+t \cos (x)+\frac{1}{\sqrt{12}} \sinh (\sqrt{12} t) \sin (2 x)
$$

Prob 2

$$
u(x, t)=\sum_{n=-\infty}^{\infty} C_{n}(0) \mathrm{e}^{-n^{2} D t} \mathrm{e}^{i n\left(x-n^{2} E t\right)}
$$

where

$$
C_{n}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{[1-\cos (x)]^{2}} \mathrm{e}^{-i n x} d x
$$

Plot:

Case: D = 0.2 E = 1

Case: $\mathrm{D}=0 \mathrm{E}=-1$

Prob 3

(a)

(b)

(c)

Fourier Cosine expansion is better, although it still has Gibbs ripples in the vicinity of $x=0.5$ due to the discontinuity of $f(x)$ there. Fourier Sine expansion has Gibbs ripples in the vicinities of both $x=0.5$ and $x=0$, because the odd extension of the original $f(x)$ has a discontinuity at $x=0$.

Prob 4

(a) $F(\omega)=(2 / \omega \pi)[1-\cos (\omega)]$
(b) $A_{n}=(2 / n \pi)[1-\cos (n \pi / L)], n=1,2,3, \ldots$

See plot below. This example illustrates the correspondence between ω and $n \pi / L$ in Fourier transform and Fourier series. Note that in all three cases in (b), the designated range for plotting is equivalent to $1 \leq n \pi / L<30$. That is why they all look like the plot for $F(\omega)$.

