MAE/MSE 502, Spring 2016, Homework \#4

You might find the following formulas useful for this homework:

$$
\begin{aligned}
& \int_{0}^{\infty} \mathrm{e}^{-a x} \cos (b x) d x=\frac{a}{a^{2}+b^{2}}, \text { for } a>0 \\
& \int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} \mathrm{e}^{-b^{2}}
\end{aligned}
$$

Prob 1 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the method of Fourier transform to solve the PDE

$$
\frac{\partial u}{\partial t}=2 \frac{\partial u}{\partial x}-3 t^{2} u
$$

with the boundary conditions:
(i) $u(x, t)$ and its partial derivatives in x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=\exp \left(-x^{2}\right)$.

To receive full credit, the final solution should have a closed-form expression of a real function that contains no unevaluated integrals. Plot the solution $u(x, t)$ as a function of x at $t=0,0.5$, and 1 . Please collect all three curves in one plot.

Prob 2 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE

$$
(1+t) \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions:
(i) $u(x, t)$ and its partial derivatives in x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=\exp (-|x|) . \quad(|x|$ is the absolute value of x.)

Plot the solution $u(x, t)$ as a function of x at $t=0,0.2$, and 1 . Please collect all three curves in one plot. It is recommended that the plot be made over the interval of $-3 \leq x \leq 3$. For this problem, it is acceptable to express the solution as an integral and use numerical integration to make the plot.

Prob. 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-t u+[1+\cos (\pi x)] \exp \left(-t^{2} / 2\right)
$$

with the boundary conditions,
(i) $u_{x}(0, t)=0$
(ii) $u_{x}(1, t)=0$
(iii) $u(x, 0)=3+2 \cos (\pi x)$

We expect a closed form solution that contains only a finite number of terms and with no unevaluated integrals.

Prob. 4 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}+2 t+\cos (x)+\sin (3 x) \exp (-t)
$$

with the boundary conditions (the first four simply indicate that the system is periodic in the x-direction),
(i) $u(0, t)=u(2 \pi, t)$
(ii) $u_{x}(0, t)=u_{x}(2 \pi, t)$
(iii) $u_{x x}(0, t)=u_{x x}(2 \pi, t)$
(iv) $u_{x x x}(0, t)=u_{x x x}(2 \pi, t)$
(v) $u(x, 0)=0$
(vi) $u_{t}(x, 0)=0$

We expect a closed form solution that contains only a finite number of terms and with no unevaluated integrals.

