MAE/MSE 502, Spring 2016 Homework \#5

Prob 1 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, find the solution of the PDE,

$$
\frac{\partial u}{\partial t}+(u+1)^{2} \frac{\partial u}{\partial x}=0
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{array}{rlrl}
\mathrm{P}(x) & =1 & & , \text { if } x<0 \\
& =1+x & , \text { if } 0 \leq x \leq 1 \\
& =2 & & \text {, if } x>1
\end{array}
$$

Plot the solution, $u(x, t)$, as a function of x at $t=0,0.15$, and 0.3 . In addition, plot the characteristics in the x - t plane. Can finite-time blow-up occur for this system? Explain why.

Prob 2 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, find the solution of the PDE,

$$
\frac{1}{1+t} \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=x
$$

with the boundary condition,

$$
u(x, 0)=\exp \left(-x^{2}\right)
$$

In addition, find the "steady state" solution $u_{\mathrm{s}}(x)$. (By definition, $u_{\mathrm{s}}(x)$ is the solution $u(x, t)$ as $t \rightarrow \infty$.) Plot the solution $u(x, t)$ as a function of x at $t=0,0.2,0.7$, and 1.5 , along with the steady state $u_{\mathrm{s}}(x)$. Please collect all 5 curves in one plot. It is recommended that the plot be made over the range of $-3 \leq x \leq 3$.

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the method of characteristics (MOC) to solve the PDE,

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions,

$$
u(x, 0)=\exp \left(-x^{2}\right)
$$

and

$$
u_{t}(x, 0)=0 .
$$

We expect a closed-form analytic solution without any unevaluated integrals. To receive full credit, you must use MOC and provide the procedure. Plot the solution $u(x, t)$ as a function of x at $t=0,1$, and 2. It is recommended that the plot be made over the range of $-5 \leq x \leq 5$.

Prob 4 (2 points)
For $u(x, t)$ defined on the infinite domain of $-\infty<x<\infty$ and $t \geq 0$, consider the equation,

$$
\frac{\partial u}{\partial t}=\frac{u}{1+t}+Q(t)
$$

with the boundary condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

Find the Green's function, $G\left(t, t^{\prime}\right)$, such that for any given $Q(t)$ and $\mathrm{P}(x)$ the solution of the system can be expressed as

$$
u(x, t)=G(t, 0) P(x)+\int_{0}^{t} G\left(t, t^{\prime}\right) Q\left(t^{\prime}\right) d t^{\prime} .
$$

