Prob 1
(a) The eigenvalues are continuous. All values of $\mathrm{c}($ for $-\infty<\mathrm{c}<\infty)$, except $\mathrm{c}=-(n \pi / 6)^{2}$ with $n=1,3$, $5,7, \ldots$, are eigenvalues. The eigenfunctions are

$$
\begin{aligned}
& G_{c}(x)=\frac{\sinh [(x-5) \sqrt{c}]}{\sqrt{c} \cosh (3 \sqrt{c})}, \text { if } c>0 \\
& G_{c}(x)=x-5, \text { if } c=0 \\
& G_{c}(x)=\frac{\sin [(x-5) \sqrt{-c}]}{\sqrt{-c} \cos (3 \sqrt{-c})} \quad, \text { if } \mathrm{c}<0 \text { and } \mathrm{c} \neq-(n \pi / 6)^{2} \text { with } n=1,3,5,7, \ldots
\end{aligned}
$$

(b) Plot:

(c) The orthogonality relation does not hold. A counterexample can be readily constructed by a direct evaluation of the integral of the product of two distinctive eigenfunctions.
(d) No, since $A G_{p}(x)$ (with $\left.A \neq 1\right)$ does not satisfy the first boundary condition.

Prob 2

$$
u(x, y)=\cos \left(\frac{\pi x}{2}\right)+3 \sin \left(\frac{\pi x}{2}\right)+x \cos (\pi y)
$$

Contour plot (with contour interval $=0.2$):

Prob 3(a)

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x) \cos (n \pi t)
$$

where

$$
a_{n}=2 \int_{0}^{1}(\sqrt{x}-x)^{2} \sin (n \pi x) d x .
$$

Plot:

Prob 3(b)

$$
u(x, t)=b_{1} \sin (\pi x)+\sum_{n=2}^{\infty} a_{n} \sin (n \pi x) \cos \left(\sqrt{n^{2}-1} \pi t\right)
$$

where

$$
b_{1}=2 \int_{0}^{1}(\sqrt{x}-x)^{2} \sin (\pi x) d x, \text { and } \quad a_{n}=2 \int_{0}^{1}(\sqrt{x}-x)^{2} \sin (n \pi x) d x
$$

Note: We can actually merge the first term in the solution into the summation. Nevertheless, the expression of $u(x, t)$ given above helps us see that the "first mode" associated to $\sin (\pi x)$ (which is a "positive bump") is independent of time. Oscillation in time only occurs in the higher modes with $n>1$. This is why the plot looks like the string stays in the positive side $(u>0)$ most of the time.

Plot:

