MAE/MSE 502, Fall 2017, Homework \#3

Prob. 1 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, consider the following three PDEs:
(I) $\frac{\partial u}{\partial t}=4 \frac{\partial u}{\partial x}$
(II) $\frac{\partial u}{\partial t}=4 \frac{\partial u}{\partial x}+3 \frac{\partial^{2} u}{\partial x^{2}}$
(III) $\frac{\partial u}{\partial t}=0.3 \frac{\partial^{3} u}{\partial x^{3}}$.

Solve each PDE with periodic boundary conditions in the x-direction (i.e., u and all of its partial derivatives in x are periodic in the x-direction) and the boundary condition in t-direction given as

$$
u(x, 0)=[1-\cos (x)]^{8} . \quad \text { (Note the eighth power in the given function.) }
$$

You may express the solution as an infinite (Fourier) series. For each case, plot the solution as a function of x at $t=0,0.1$, and 0.3 . Please collect all three curves in one plot. [See the general remark below HW1-Q1 on estimating the appropriate number of terms to keep in the series.]

Prob. 2 (2 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,

$$
\frac{1}{1+t} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{5} u}{\partial x^{5}}+u
$$

with periodic boundary conditions in the x-direction and the boundary condition in the t-direction given as

$$
u(x, 0)=1+\cos (x)+3 \sin (x)
$$

We expect a closed-form solution which consists of only a finite number of terms and no unevaluated integrals. The solution should be expressed in real numbers and functions. A deduction will be assessed on any imaginary number " i " $(=\sqrt{-1})$ that is left in the solution.

Prob 3 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-u+3+\mathrm{e}^{-t} \cos (\pi x)
$$

with the boundary conditions
(i) $u_{x}(0, t)=0$
(ii) $u_{x}(1, t)=0$
(iii) $u(x, 0)=3+\cos (\pi x)+\cos (2 \pi x)$.

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals.

Prob 4 (2 points)

For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial u}{\partial x}+\frac{\partial^{3} u}{\partial x^{3}}+\cos (t)
$$

with periodic boundary conditions in the x-direction and the following boundary conditions in the t-direction,
(i) $u(x, 0)=0$,
(ii) $u_{t}(x, 0)=\cos (x)$.

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real numbers and functions. A deduction will be assessed on any imaginary number " i " $(=\sqrt{-1})$ that is left in the solution.

Prob 5 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, consider the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+t+\cos (\pi x)
$$

with the boundary conditions
(i) $u_{x}(0, t)=1$
(ii) $u_{x}(1, t)=3$
(iii) $u(x, 0)=x^{2}+x$.

Since the system has a nonhomogeneous PDE and only nonhomogeneous boundary conditions, a direct application of separation of variables would not work. Also, one can readily verify that this system does not have a steady solution (since the "total energy" goes to infinity as $t \rightarrow \infty$). Therefore, the strategy of solving the "perturbation equation" for the "departure from steady state" (cf. Sec. 8.2) would not work. Nevertheless, if we consider the change of variable,

$$
U(x, t) \equiv u(x, t)-f(x),
$$

with a chosen $f(x)$ that satisfies $f^{\prime}(0)=1$ and $f^{\prime}(1)=3$ ("prime" is derivative with respect to x), then it is guaranteed that the first two boundary conditions for U will be homogeneous. More precisely, $U_{x}(0, t)=0$ and $U_{x}(1, t)=0$. Writing the PDE and the 3rd boundary condition also in terms of U, we can use standard methods ($c f$. Sec 8.3) to solve $U(x, t)$. [The minor price we pay is that there will be extra term(s) in the PDE for U, but those are manageable for this problem.] Try to use this strategy to find the solution, $u(x, t)$, for the system. We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals.

