MAE/MSE 502, Fall 2017, Homework \#4

Please include the printout of your code(s) in the report. You might find the following formula useful:

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} \mathrm{e}^{-b^{2}} \tag{1}
\end{equation*}
$$

Prob 1 (3 points)
(a) For $u(x, t)$ defined on the infinite domain of $-\infty<x<\infty$ and $t \geq 0$, use the Fourier transform method to solve the PDE (with A and B given constants),

$$
\frac{\partial u}{\partial t}=A \frac{\partial u}{\partial x}+B \frac{\partial^{2} u}{\partial x^{2}}
$$

with the boundary conditions
(i) $u(x, t)$ and its partial derivatives with respect to x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=\exp \left(-x^{2}\right)$.

We expect a closed-form analytic solution without any integral in the final answer.
(b) Plot the solution $u(x, t)$ as a function of x at $t=0,0.5$, and 2 for the following three cases:
(i) $A=4, B=3$. (ii) $A=4, B=0$. (iii) $A=0, B=3$. In each case, collect the three curves in one plot. Make the plot over the range of $-20 \leq x \leq 20$. Briefly explain the behavior of the solution in those 3 cases.
[Note: For this problem, an analytic solution can be obtained by applying the integral formula, Eq. (1), twice. Once in the forward and once in the inverse Fourier transform.]

Prob 2 (3 points)

For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the method of Fourier transform to solve the PDE (with C a constant),

$$
\frac{\partial u}{\partial t}=C \frac{\partial^{3} u}{\partial x^{3}}
$$

with the boundary conditions:
(i) $u(x, t)$ and its partial derivatives with respect to x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=\exp \left(-x^{2}\right)$

For this problem, it is acceptable to express the solution as an integral. With $C=2$, plot the solution $u(x, t)$ as a function of x at $t=0,0.5$, and 2. Please collect all three curves in one plot. Make the plot over the range of $-20 \leq x \leq 20$.
[Note: For this problem, numerical integration (e.g., by the trapezoidal method) will be needed to evaluate $u(x, t)$ in order to make the plots. Since numerical integration cannot go all the way to ∞, one has to "truncate" the integral at a finite value of ω. This is analogous to truncating a Fourier series at a finite n. A useful way to determine where to truncate the integral is to plot, for a give $t, U(\omega, t)$ (the Fourier transform of $u(x, t))$ as a function of ω and observe how $U(\omega, t)$ decays with ω.]

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\exp \left(-x^{2}-t\right)
$$

with the boundary conditions:
(i) $u(x, t)$ and its partial derivatives with respect to x vanish as $x \rightarrow \pm \infty$
(ii) $u(x, 0)=0$

For this problem, it is acceptable to express the solution as an integral. Plot the solution $u(x, t)$ as a function of x at $t=0,0.2,0.5,1$, and 5 . Please collect all five curves in one plot. Make the plot over the range of $-10 \leq x \leq 10$.
[Note: The plot is an important part of the answer. Expect at least 50% deduction without the plot. Please clearly label the curves in the plot. Expect a deduction if labeling is unclear, incorrect, or missing. Like Problem 2, numerical integration (e.g., by the trapezoidal method) is needed to evaluate $u(x, t)$ in order to make the plot. See remarks below Problem 2 about how to truncate the Fourier integral.]

Prob 4 (2 points)

For $u(x, y, t)$ defined on the domain of $0 \leq x \leq 1,0 \leq y \leq 1$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+u
$$

with the boundary conditions
(i) $u(0, y, t)=0$
(ii) $u(1, y, t)=0$
(iii) $u(x, 0, t)=0$
(iv) $u(x, 1, t)=0$
(v) $u(x, y, 0)=\sin (\pi x) \sin (2 \pi y)+\sin (2 \pi x) \sin (\pi y)$.

We expect a closed-form analytic solution with only a finite number of terms and without any unevaluated integral.

