Three free points for all who return this assignment on time with a properly filled cover sheet, and without a violation of the rules on collaboration for this homework. This brings the total points from homework assignments to 50 .

Prob 1 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE,

$$
(1+t) \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=1
$$

with the boundary condition

$$
u(x, 0)=\exp \left(-x^{2}\right)
$$

We expect a closed-form analytic solution for this problem. Plot the solution, $u(x, t)$, as a function of x at $t=0,1$, and 2. Make the plot over the range of $-5 \leq x \leq 5$. Please collect all 3 curves in one plot.

Prob 2 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=x
$$

with the boundary condition

$$
u(x, 0)=0
$$

We expect a closed-form analytic solution for this problem. Plot the solution, $u(x, t)$, as a function of x at $t=0,0.1$, and 0.3 . Make the plot over the range of $-3 \leq x \leq 3$. Please collect all 3 curves in one plot.

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}+(1-u) \frac{\partial u}{\partial x}=-u
$$

with the boundary condition

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =0, \text { if } x<0 \\
& =x, \text { if } 0 \leq x \leq 1 \\
& =1, \text { if } x>1
\end{aligned}
$$

We expect a closed-form analytic solution for this problem. Plot the solution, $u(x, t)$, as a function of x at $t=0$, and 0.75 , and 1.5. Make the plot over the range of $-1 \leq x \leq 3$. Please collect all 3 curves in one plot.

