MAE/MSE 502 Partial Differential Equations in Engineering

Spring 2017 Monday/Wednesday 6:00-7:15 PM, Classroom: CAVC 101

Instructor: Huei-Ping Huang (hp.huang@asu.edu), ERC 359 Office hours: Monday 2:00-3:30, Tuesday 2:00-3:30, or by appointment

Course website http://www.public.asu.edu/~hhuang38/MAE502.html

Course Outline

I. Analytic solution of linear PDE

1. Overview of PDE

Commonly encountered PDEs in engineering and science

Types of PDEs, the physical phenomena they represent, and relevant boundary conditions

- 2. Method of separation of variables; eigenfunction expansion
- 3. Short review of Sturm-Louville Problem and orthogonal functions;

Representation using orthogonal basis

4. Fourier Series

Solution of ODE and PDE by Fourier Series expansion

5. Fourier transform and other integral transform methods

Solution of PDE by Fourier transform; Behavior of solution in spectral space

- 6. PDE in non-Cartesian geometry
- 7. Forced problem and brief introduction to Green's function

II. Additional topics

8. Brief introduction to nonlinear PDE

Examples of nonlinear PDEs for real world phenomena; Behavior of their solutions; Conservation laws

9. Method of cheracteristics; Solution of first order PDE

Textbook: Applied Partial Differential Equation, by R. Haberman, **Required** Additional lecture notes/slides will be provided by instructor

Additional recommended textbooks:

- (1) Partial Differential Equations for Scientists and Engineers, by S. J. Farlow (Dover Publications) This is a very well-written book that is ideal for self-study. It is also very cheap (~\$10 new).
- (2) The <u>first four chapters</u> of *Partial Differential Equations: 2nd Edition*, by L. C. Evans (American Mathematical Society) This is a more advanced book intended for math majors. Nevertheless, the material in the first four chapters serve as a more rigorous (and better organized) supplement to Haberman's book.

Grade: Homework 50% Midterm 20% Final 30% Specific rules for collaboration on homework will be released at a later time

Requirement of programming using Matlab or equivalent: Although this course will focus on analytic solutions, some more complicated computations in the homework assignments will require programming using Matlab (or other programming languages/tools such as Fortran, C, Python, Java, Mathematica, Maple, Sage, R). A beginner's guide for Matlab will be posted to the class website.

Grade: Homework 50% Midterm 20% Final 30% Specific rules for collaboration on homework will be released at a later time

Useful links

Please make sure that you are familiar with ASU policies on academic integrity and campus safety:

ASU policy on academic integrity: https://provost.asu.edu/academicintegrity Campus safety and security: https://provost.asu.edu/University-Safety-Security

Grade and grading policies, contacts of SEMTE advising office:

Grade and grading policies: https://students.asu.edu/grades SEMTE advising: http://semte.engineering.asu.edu/advising/

ASU website for software:

https://apps.asu.edu (login required)