Prob 1

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{2}\right) \exp \left(-\left(\frac{n \pi}{2}\right)^{2} t-\sin (t)\right)
$$

where the summation is over odd values of n only.

$$
a_{n}=\frac{\int_{0}^{1}\left(2 x^{4}-7 x^{2}+6 x\right) \sin \left(\frac{n \pi x}{2}\right) d x}{\int_{0}^{1}\left[\sin \left(\frac{n \pi x}{2}\right)\right] d x}, \text { if } n \text { is odd. }
$$

Plot (based on truncation at $n=9$, inclusively):

Prob 2

$$
u(x, t)=\frac{2}{2+t}+\left(\frac{2}{2+t}\right)^{9 \pi^{2}+1} \cos (3 \pi x)
$$

Plot:

Prob 3

$$
E(t)=\frac{1}{6(1+t)}+\frac{t+t^{2} / 2}{t+1}
$$

At $t=1, E(t)=5 / 6 . E(t) \rightarrow \infty$ as $t \rightarrow \infty$. A steady state does not exist.
Prob 4
We will discuss the solution in class.

