MAE/MSE 502, Spring 2017, Homework \#5

One free point for all, which brings the total points from homework assignments to 50 .
Prob 1 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE,

$$
\frac{\partial u}{\partial t}+\left(u^{2}+u\right) \frac{\partial u}{\partial x}=0
$$

with the boundary condition

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & =0, \text { if } x<0 \\
& =x, \text { if } 0 \leq x \leq 1 \\
& =1, \text { if } x>1
\end{aligned}
$$

We expect a closed-form analytic solution for this problem. Plot the solution, $u(x, t)$, as a function of x at $t=0$, and 0.5 , and 1 .

Prob 2 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE

$$
(1+t) \frac{\partial u}{\partial t}+(1+x) \frac{\partial u}{\partial x}=(1+u)
$$

with the boundary condition

$$
u(x, 0)=\exp \left(-x^{2}\right)
$$

We expect a closed-form analytic solution for this problem. Plot the solution, $u(x, t)$, as a function of x at $t=0,0.2$, and 0.5 . Please collect all 3 curves in one plot.

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}
$$

with the boundary conditions:
(i) $u(x, 0)=x$
(ii) $u_{t}(x, 0)=x^{2}$.

We expect a closed-form analytic solution for this problem. Plot the solution, $u(x, t)$, as a function of x at $t=0,0.5$, and 1 . Please collect all 3 curves in one plot.

