
                                              MAE502, Fall 2018 Homework #5 
 

Hard copy of report is due 6:00 PM on the due date.  
 

Task 0 (no point, but mandatory to complete for the report to be accepted) 

Provide a statement to address whether collaboration occurred in completing this assignment. This statement 

must be placed in the beginning of the first page of report. See related clarifications in Homework #1. 
 

You might find the following formulas useful: 
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Task 1 (3 points) 

For u(x,t) defined on the domain of – ∞ < x < ∞ and t ≥ 0, use the Fourier transform method to solve the PDE 
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with the boundary condition, 
 

𝑢(𝑥, 0) =  𝑒−𝑥2
 

 

We expect a closed-form real solution without any unevaluated integral. 
 

Task 2 (3 points) 

For u(x,t) defined on the domain of – ∞ < x < ∞ and t ≥ 0, use the Fourier transform method to solve the PDE 
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with the boundary condition, 
       

𝑢(𝑥, 0) =  𝑒−𝑥2
 

 

We expect a closed-form real solution without any unevaluated integral. 

 

Task 3 (3 points) 

For u(x,t) defined on the domain of – ∞ < x < ∞ and t ≥ 0, consider the PDE 
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Evaluate u(x,t) at x = 3, t = 2. (Note: The key deliverable of this task is the exact value of u(3,2). You may or may 

not need to find the full solution, u(x, t) for all x and t, to answer the key question.) 


