MAE502, Fall 2018 Homework \#5

Hard copy of report is due 6:00 PM on the due date.
Task 0 (no point, but mandatory to complete for the report to be accepted)
Provide a statement to address whether collaboration occurred in completing this assignment. This statement must be placed in the beginning of the first page of report. See related clarifications in Homework \#1.

You might find the following formulas useful:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\cos (b x)}{1+x^{2}} d x=\left(\frac{\pi}{2}\right) \mathrm{e}^{-|b|}, \text { where }|b| \text { is the absolute value of } b . \\
& \int_{0}^{\infty} \mathrm{e}^{-x} \cos (b x) d x=\frac{1}{1+b^{2}} \\
& \int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} \mathrm{e}^{-b^{2}}
\end{aligned}
$$

Task 1 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the Fourier transform method to solve the PDE
$\frac{\partial u}{\partial t}=(1+2 t) \frac{\partial^{2} u}{\partial x^{2}}$
with the boundary condition,
$u(x, 0)=e^{-x^{2}}$
We expect a closed-form real solution without any unevaluated integral.
Task 2 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the Fourier transform method to solve the PDE

$$
\frac{\partial u}{\partial t}=3 t \frac{\partial u}{\partial x}-2 u
$$

with the boundary condition,
$u(x, 0)=e^{-x^{2}}$
We expect a closed-form real solution without any unevaluated integral.
Task 3 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, consider the PDE
$\frac{\partial u}{\partial t}=(1-t) \frac{\partial^{2} u}{\partial x^{2}}$
with the boundary condition,
$u(x, 0)=\frac{1}{1+x^{2}}$
Evaluate $u(x, t)$ at $x=3, t=2$. (Note: The key deliverable of this task is the exact value of $u(3,2)$. You may or may not need to find the full solution, $u(x, t)$ for all x and t, to answer the key question.)

