Task 1

(a) \& (b) All values of c along the real line, $-\infty<c<\infty$, are eigenvalues. The only exceptions are the isolated points at $c=-(n \pi / 10)^{2}, n=1,3,5,7, \ldots$, where a solution for the eigenvalue problem does not exist.

The eigenfunctions are

$$
\begin{aligned}
& G_{c}(x)=\frac{3 \sinh (\sqrt{c} x)}{\sqrt{c} \cosh (5 \sqrt{c})}, \text { if } c>0 \\
& G_{c}(x)=3 x, \text { if } c=0 \\
& G_{c}(x)=\frac{3 \sin (\sqrt{-c} x)}{\sqrt{-c} \cos (5 \sqrt{-c}}, \text { if } c<0 \text { and } c \neq-(n \pi / 10)^{2}, n=1,3,5,7, \ldots
\end{aligned}
$$

The plot for (b) is in the next page.
(c) The orthogonality relation does not hold.
(d) No.

Task 2

$$
u(x, t)=3 \cosh (\pi t)+\frac{4}{\pi} \sinh (\pi t)+t \cos (\pi x)+\cos (\sqrt{3} \pi t) \cos (2 \pi x)
$$

Task 3

(a) The system has infinitely many solutions.
(b) $u(x, y)=a_{0}+\frac{\cos (2 \pi y) \cosh (2 \pi x)}{2 \pi \sinh (2 \pi)}$, where a_{0} is an arbitrary constant.
(c) The contour plot is in the last page.

Plot for Task 1b:

Plot for Task 3c:

