
 

 

 

 

MAE/MSE502  Partial Differential Equations in Engineering 

 

Spring 2019 Mon/Wed 6:00-7:15 PM  Classroom: CAVC 101    

   

Instructor: Huei-Ping Huang , hp.huang@asu.edu 

 

 

Office: ERC 359   

Office hours: Monday 3-4 PM, Tuesday 3-5 PM, or by appointment 

 

 

 

 

 

 

 

 



 

 
Course website 

 
 http://www.public.asu.edu/~hhuang38/MAE502.html 

 
  
                  • Updated schedule 
 
                  • Homework assignments/solutions 
 
                  • (Formal) supplementary slides 
 
                  • Matlab examples 
 
 
      Transparencies for most lectures will be scanned and posted 
      online at a separate (private) website - detail forthcoming 

 
 

 

 

 

 



 

 

                                                                   Course Outline 
 

                                                                                              ( See syllabus ) 

 

 

     I. Analytic solution of linear PDE 

           1. Overview of PDE 

                   Commonly encountered PDEs in engineering and science 

                   Types of PDEs, the physical phenomena they represent, and relevant boundary conditions 

           2. Method of separation of variables; eigenfunction expansion 

           3. Short review of Sturm-Louville Problem and orthogonal functions; 

                   Representation using orthogonal basis 

           4. Fourier Series 

                   Solution of ODE and PDE by Fourier Series expansion 

           5. Fourier transform and other integral transform methods 

                   Solution of PDE by Fourier transform; Behavior of solution in spectral space 

           6. PDE in non-Cartesian geometry 

           7. Forced problem and brief introduction to Green's function 

                  

     II. Additional topics 

           8. Brief introduction to nonlinear PDE 

                    Examples of nonlinear PDEs for real world phenomena; Behavior of their solutions; 

                    Conservation laws 

           9. Method of cheracteristics; Solutions of first order PDEs. 
 

 

 



 

 

 

          Textbook:   

 

     Applied Partial Differential Equation, by R. Haberman, Required 

     (Both 5th and 4th editions will work)            

 

      Additional lecture notes/slides will be provided by instructor 

 

     Remarks on textbook ... 

 
     Additional recommended textbook: 

          Partial Differential Equations for Scientists and Engineers, by S. J. Farlow 

          (Dover Publications)  This is a very well-written book that is ideal for 

           self-study. It is also relatively cheap (~ $10 new). 

 
 

 

 

 

 

     

 

 

 



        

Grade:   Homework 50%   

               Midterm 20%   

               Final 30% 

 

 

                     Specific rules for collaboration on homework 

                     will be released along with the first assignment. 

 

 

                   

 

 

 

 

 

  

 

        



       Requirement of programming using Matlab or equivalent 

 

    Although this course will focus on analytic solutions, some more 

    complicated computations in the homework assignments will 

    require programming using Matlab (or other programming 

    languages/tools such as Fortran, C, Python, Java, Mathematica, 

    Maple, Sage, R). A beginner's guide for Matlab will be posted to 

   the class website. 

 
       •ASU students have free access to Matlab through My Apps 

 

       • Instructor will provide initial help on Matlab 

          Please contact instructor individually 
 

 

 

 

 

 

 



 

 

       Although this course is called 'partial differential equations", 

      it also serves the purpose of synthesizing many math subjects 

      you have learned before (calculus, ODE, linear algebra, 

      numerical methods).  It is useful to review those subjects. 
 

            
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

A very short introduction ... 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Examples of "classical" linear PDEs 
 

To draw the correspondence between a PDE and a real world phenomenon, we will use t to denote time and 

(x, y, z) to denote the 3 spatial coordinates 

 

 

Heat (or diffusion) equation:    
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
 , describes the diffusion of temperature or the density 

of a chemical constituent from an initially concentrated distribution (e.g., a "hot spot" on a metal rod, or a 

speck of pollutant in the open air) 

 

A typical solution (when the initial distribution of u is a narrow “bump”):  𝑢(𝑥, 𝑡) =
1

√𝑡
exp(−

𝑥2

4𝑡
)    

[Exercise: Verify that this solution satisfies the PDE with the “initial condition” given as u(x,1) = exp(–x2)] 

 

The figure in next page shows this solution at a few different times.  As time increases, u(x) becomes 

broader, its maximum decreases, but its "center of mass" does not move. These features characterize a 

"diffusion process". 

 

 

 

 

 

 

 

 

 

 



 

                               Solution of the heat equation at different times. The three curves are 

                                u(x, 1), u(x, 3), and u(x,10) 

 

 

            

 

 

 

 



Linear advection equation:  
𝜕𝑢

𝜕𝑡
= 𝑐

𝜕𝑢

𝜕𝑥
, describes the constant movement of an initial 

distribution of u with a "speed" of − c along the x-axis.  The distribution moves while preserving its shape. 

 

A typical solution:  u(x, t) = F() ,  ≡ x+ct ;  F can be any function that depends only on x+ct. 

(Exercise: Verify that this is indeed a solution of the original equation.) 

The following figure illustrates the behavior of the solution with c = 1. The initial condition, u(x, t = 0), is a 

"top hat" structure. At later times, this structure moves to the left with a "speed" of x/t = −1 while 

preserving its shape.  (The x and t here are the increments in space and time in the following diagrams.) 

                                                     The 3 panels are u(x, 0), u(x, 1), and u(x, 2) 



 

Linear wave equation: 
𝜕2𝑢

𝜕𝑡2
= 𝑐2

𝜕2𝑢

𝜕𝑥2
 , describes wave motion 

 

For example, a simple traveling sinusoidal structure, u(x, t) = sin(x + ct), as illustrated below, is a solution 

of the equation.  (While at this solution is similar to the solution of the linear advection equation, more 

complicated behavior would emerge when we consider the superposition of different sinusoidal "modes", 

and when more complicated boundary conditions are introduced for the wave equation.) 

 

 

                                                                



                                                                  Boundary conditions (I) 

 

In the three preceding examples, we glossed over the role of boundary conditions. The solutions of the heat 

equation and linear advection equation described before are valid for an unbounded domain in space, 

–∞ < x < ∞, and a "semi-infinite" domain in time, 0 < t < ∞. The first boundary condition we have is 

simply that u is well-behaved as x → ∞ and x → –∞.  We also need a boundary condition (essentially an 

"initial condition" in t), u(x, 0) = G(x).  The following diagram illustrates the relevant domain in the x-t 

plane. 

 

 

 

 

 

 

 

 

  



                                                              Boundary conditions (II) 

 

In real world applications, the heat equation is often defined on a finite interval in x, a ≤ x ≤ b, and on a 

semi-infinite domain in t (consider u(x,t) as the temperature distribution along a finite metal rod at a given 

time, t).  The following diagram illustrates the relevant domain in the x-t plane in this case.  In addition to 

the boundary condition at t = 0, u(x,0) = G(x), two more b.c.'s are needed at x = a and x = b for all t.  They 

can be written as u(a, t) = P(t) and u(b, t) = Q(t).  Note that G(x) itself has to satisfy the two boundary 

conditions, G(a) = P(0) and G(b) = Q(0).   

 

 

 



                                             Boundary conditions (III) - Laplace's equation 

 

There are yet other situations when a PDE is defined on a closed domain.  A famous example is   

Laplace's equation:  
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= 0.  (It belongs to the more general class of elliptic equations.) 

The closed domain is illustrated in the following.  In this case, boundary conditions need to be specified at 

all of the four walls. 

 

Remark: Different types of PDEs often need to be matched with different types of boundary 

conditions in order for their solutions to exist and be unique.   

 

 



Heat equation in two- and three-dimensions: 

 

               
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
                 (2-D) 

 

              
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
        (3-D) 

 

The behavior of the solutions of these equations is similar to that of the 1-D heat equation. An initially 

concentrated distribution in u will spread in space as t increases. 

 

For a closed domain with u specified on the "walls", the solution may reach "equilibrium" as t → ∞.  At this 

limit, u ceases to change further so ∂u/∂t ≈ 0. Then, the heat equation is reduced to Laplace's equation. In 

other words, Laplace's equation describes the equiribrium solution (or "steady state solution") of the heat 

transfer or diffusion problem. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

      Where to begin? 

                                                        

 

 

      If you can't solve a problem, then there's an easier problem that 

     you can solve. Find it. 

                                                                                     -- G. Polya 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

            Most of the techniques for solving a PDE relies on transforming 

         the equation into something simpler that we know how to solve 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                       Example: Method of Fourier series expansion / Spectral method 

 

 

 
 

 

 

 

 

 



                       Example: Finite difference method for Laplace's equation 

 

 

 


