MAE502, Spring 2019 Homework \# 3

Hard copy of report is due 6:00 PM on the due date. The report should include a statement on collaboration, and computer code(s) used for the assignment. See the cover page of Homework \#1 for the rules on collaboration.

Prob 1 (1 point)
Consider the eigenvalue problem for $G(x)$ (with c as the eigenvalue) defined on the interval, $0 \leq x \leq 1$,
$\frac{d^{2} G}{d x^{2}}=c G$
with the boundary conditions,
(i) $G(0)=0.5 G(1)$, (ii) $G^{\prime}(0)=0 \quad$ (Note that the second b.c. is imposed on the derivative of G.)
(a) Is the system given above a Sturm-Liouville system?
(b) Find all eigenvalue(s) and the corresponding eigenfunction(s) for the system.

Prob 2 (2 points)
(a) For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the Wave equation,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$
with the boundary conditions:
(i) $u(0, t)=0$
(ii) $u(1, t)=0$
(iii) $u(x, 0)=[\sin (\sqrt{x}-x)]^{2}$
(iv) $u_{t}(x, 0)=0$.

Plot the solution $u(x, t)$ as a function of x at $t=0,0.25,0.5,0.75$, and 1.0. Please collect all 5 curves in one plot. (b) Repeat (a) but with the second boundary condition changed to: (ii) $u_{x}(1, t)=0$. Plot the solution $u(x, t)$ as a function of x at $t=0,0.25,0.5,0.75$, and 1.0.

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, consider the PDE (in which U and K are constants)
$\frac{\partial u}{\partial t}=U \frac{\partial u}{\partial x}+K \frac{\partial^{2} u}{\partial x^{2}}$
with periodic boundary conditions in the x-direction (i.e., $u(0, t)=u(2 \pi, t), u_{x}(0, t)=u_{x}(2 \pi, t)$, and so on), and the boundary condition in the t-direction given as

$$
u(x, 0)=\frac{[1-\cos (x)]^{12}}{4096}+\frac{\left[1-\cos \left(x-\frac{\pi}{2}\right)\right]^{12}}{2048}
$$

Solve the PDE by Fourier series expansion. Plot the solution $u(x, t)$ at $t=1.2$ for the three cases with (i) $U=2, K=0$, (ii) $U=0, K=0.05$, and (iii) $U=2, K=0.05$. Also, plot the solution at $t=0$ (which is the same for all three cases). Please collect all four curves in one plot.

Prob 4 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial u}{\partial t}=(1+t) \frac{\partial^{2} u}{\partial x^{2}}+t \frac{\partial^{3} u}{\partial x^{3}}+t \frac{\partial^{4} u}{\partial x^{4}}+u$
with periodic boundary conditions in the x-direction, and the boundary condition in the t-direction given as

$$
u(x, 0)=1+\sin (x)
$$

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be real and should be expressed in real numbers and functions. A deduction will be assessed on the solution otherwise.

Prob 5 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}+3 u$
with periodic boundary conditions in the x-direction and the following boundary conditions in the t-direction,
(i) $u(x, 0)=\cos (2 x)$,
(ii) $u_{t}(x, 0)=\sin (x)$.

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be real and should be expressed in real numbers and functions. A deduction will be assessed on the solution otherwise.

