MAE502, Spring 2019 Homework \#5

Hard copy of report is due 6:00 PM on the due date. The report should include a statement on collaboration, and computer code(s) used for the assignment. See the cover page of Homework \#1 for the rules on collaboration.

For ALL problems in this homework, we expect a closed-form solution without any unevaluated integrals. The solution should be real and should be expressed in real numbers and functions.

You might find the following formulas useful:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\cos (b x)}{1+x^{2}} d x=\left(\frac{\pi}{2}\right) \mathrm{e}^{-|b|}, \text { where }|b| \text { is the absolute value of } b . \\
& \int_{0}^{\infty} \mathrm{e}^{-x} \cos (b x) d x=\frac{1}{1+b^{2}} \\
& \int_{0}^{\infty} \mathrm{e}^{-x^{2}} \cos (2 b x) d x=\frac{\sqrt{\pi}}{2} \mathrm{e}^{-b^{2}}
\end{aligned}
$$

Task 1 (3 points)
(a) For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the Fourier transform method to solve the PDE $\frac{\partial u}{\partial t}=3 \frac{\partial u}{\partial x}+\frac{\partial^{2} u}{\partial x^{2}}$
with the boundary condition,
$u(x, 0)=e^{-x^{2}}$
Plot the solution, $u(x, t)$, as a function of x at $t=0$ and 1. Please put the two curves in one plot.
(b) Repeat (a) but change the factor of " 3 " in the PDE to " -3 ". Plot the solution as a function of x at $t=0$ and 1 .
(c) Repeat (a) but eliminate the second-derivative term from the PDE. In other words, the PDE is simply
$\partial u / \partial t=3 \partial u / \partial x$. Plot the solution as a function of x at $t=0$ and 1 .
The recommended range for plotting of $u(x, t)$ for Part (a)-(c) is $-10 \leq x \leq 10$.
Task 2 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, use the Fourier transform method to solve the PDE

$$
\frac{\partial u}{\partial t}=(1+t) \frac{\partial u}{\partial x}+e^{-t} u
$$

with the boundary condition,
$u(x, 0)=e^{-x^{2}}$
Task 3 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, consider the PDE
$\frac{\partial u}{\partial t}=(2-t) \frac{\partial^{2} u}{\partial x^{2}}$
with the boundary condition,
$u(x, 0)=\frac{1}{1+x^{2}}$
Evaluate $u(x, t)$ at $x=2, t=4$. (Note: The key deliverable of this task is the exact value of $u(2,4)$. You may or may not need to find the full solution, $u(x, t)$ for all x and t, to answer the key question.)

