MAE502, Spring 2019 Homework \#6

Hard copy of report is due 6:00 PM on the due date. The report should include a statement on collaboration, and computer code(s) used for the assignment. See the cover page of Homework \#1 for the rules on collaboration.

For ALL problems in this homework, we expect a closed-form solution without any unevaluated integrals.

Prob 1 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$(1+t) \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=u$
with the boundary condition
$u(x, 0)=e^{-x^{2}}$.
Prob 2 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+t \frac{\partial u}{\partial x}=1$
with the boundary condition,
$u(x, 0)=\left\{\begin{array}{c}-\frac{1}{x}, \text { if } x \leq-1 \\ 1, \text { if } x>-1\end{array}\right.$
Plot the solution as a function of x at $t=0.25$ and 0.5 , and the initial state, $u(x, 0)$. Collect all 3 curves in one plot.
Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}+1$
with the boundary conditions:
(i) $u(x, 0)=e^{-x^{2}}$, (ii) $u_{t}(x, 0)=2 x e^{-x^{2}}$.

Prob 4 (1 point)
For $u(x, y, t)$ defined on the domain of $-\infty<x<\infty,-\infty<y<\infty$, and $t \geq 0$, solve the PDE
$(1+t) \frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=(1+t) u$
with the boundary condition,
$u(x, y, 0)=e^{-\left(x^{2}+y^{2}\right)}$.

