
                                 Another example for the method of cheracteristics

For u(x,t) defined on the infinite interval, −∞ < x < ∞, solve the PDE

       ∂u
∂ t

+ u ∂ u
∂ x

= 0 ,

with the boundary condition,

        u(x, 0) = P(x) ≡ sin(x).

Solution:

Applying the method of characteristics, we have

       dx/dt = u        (the equation for the characteristics)                                                                          (1)

       du/dt = 0        (u(t) ≡ u(x(t),t) is the solution along a characteristic x(t) described by Eq. (1))        (2)

Solving (2), we have u(t) = u(0), or u(x(t),t) = u(x(0),0) = P(x(0)) = sin(x(0)).  We will hereafter denote x(0) by 
x0 and x(t) by x so we have

              u(x,t) = sin(x0) .                           (3)

Solving (2) (and given that u(t) = u(0)), we have x(t) = x(0) + u(0)t, or

              x = x0 + sin(x0) t                          (4)



Equations (3) and (4) form the basis for us to evaluate the solution u(x,t) for a given (x,t). This can be done in 
two steps:  

          (i) With the given (x,t), we use Eq. (4) to find x0.  Since Eq. (4) is a nonlinear equation in x0, a numerical
               method (e.g., Newton's method, bisection method) can be used to find the solution.  Note that the 
               equation could have multiple solutions. We will discuss the issue shortly.

          (ii) Once x0 is obtained, the final solution is just u(x,t) = sin(x0) for the given (x,t).  

Since the solution is periodic in x, it suffices to find the solution within the interval of 0 ≤ x ≤ 2π. Figure 1 
shows the solutions at 0.3 and 0.7 obtained using the matlab code in the next page. Bisection method is used in 
the code to solve Eq. (4). 

                                 Fig. 1



for k = 1:101
    x(k) = (k-1)*0.01*2*pi;
    u0(k) = sin(x(k));
    z(k) = 0;
end
t = 0.3;
for k = 1:101
    x(k) = (k-1)*0.01*2*pi;
    a = 1/t;
    b = x(k)/t;
    xl = 0;
    xr = 2*pi;
    xm = (xl+xr)/2;
    for ip = 1:10
        if ((b-a*xl-sin(xl))*(b-a*xm-sin(xm)) <= 0)
            xr = xm;
        else
            xl = xm;
        end
        xm = (xl+xr)/2;
    end
    x0 = xm;
    u1(k) = sin(x0);
end
t = 0.7;
for k = 1:101
    x(k) = (k-1)*0.01*2*pi;
    a = 1/t;
    b = x(k)/t;
    xl = 0;
    xr = 2*pi;
    xm = (xl+xr)/2;
    for ip = 1:10
        if ((b-a*xl-sin(xl))*(b-a*xm-sin(xm)) <= 0)
            xr = xm;
        else
            xl = xm;
        end
        xm = (xl+xr)/2;
    end
    x0 = xm;
    u2(k) = sin(x0);
end
plot(x,u0,'k-',x,u1,'b-',x,u2,'r-',x,z,'k--')
axis([0 2*pi -1.5 1.5])



A special analysis for the behavior of the solution at x = π :

At x = π, Eq. (4) is reduced to 

       − x0 /t  + π/t = sin(x0)                            (5) ,

which always admits the solution of x0  = π.  Therefore, u(π,t) = u(π,0) = 0 is always a solution at x = π.  (This 
behavior is reproduced in Fig. 1.) The question is whether it is the only solution.  Note that for a given t, the 
solution x0 for Eq. (5) is the intersection of the line with a slope of −1/t, − x0 /t  + π/t, and the sinusoidal curve, 
sin(x0). See sketch in Fig. 2.  With a small t, we anticipate only one solution of  x0  = π.  As t increases, 
specifically when t > 1, multiple solutions for x0 emerge.  In physical space, this corresponds to multiple 
solutions for u(x,t) at x = π, as illustrated in Fig. 3.  This situation can be physically meaningful. For example, if 
u(x,t) describes the elevation of the interface between two fluids, the interface is certainly allowed to "fold". In 
fact, it is for this type of problem that the method of characteristics becomes particularly useful.  If other 
methods (e.g., Fourier method or just a general finite difference numerical method) are used to solve the 
problem, a finite-time blow up will occur as t approaches 1. 
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