MAE561/471 Fall 2013 HW1

For this assignment, discussion with peers is allowed but the final write-up must be yours. Contribution from collaborator(s), if it is substantial, should be properly acknowledged.

Background:

For $u(x, t)$ defined on the domain of $0 \leq x \leq 20$ and $t \geq 0$, consider the linear advection equation with a constant C,

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-C \frac{\partial u}{\partial x} \tag{1}
\end{equation*}
$$

and with the initial condition,

$$
u(x, 0)=\mathrm{P}(x)
$$

where

$$
\begin{aligned}
\mathrm{P}(x) & \equiv \cos [0.5 \pi(x-5)], & \text { if } 4 \leq x \leq 6 \\
& \equiv 0, & \text { otherwise } .
\end{aligned}
$$

This is the test case of the "advection of a bump" as we discussed in class. We will also assume periodic boundary conditions in x :

$$
u(0, t)=u(20, t) .
$$

In this exercise, you will solve the above equation using four different finite difference schemes. Note that the analytic solution of the system is $u(x, t)=\mathrm{P}(x-C t)$, which can be used to verify the numerical solutions. We consider $C=1$ for all four problems. We will use i and j as the indices for x and t. The material for this exercise is briefly mentioned in Sec 6.2 but we rely heavily on instructor's notes. All relevant transparencies are available online.

Please submit the print-out of your codes for all four problems. No code, no credit. As stated in our first-day lecture, computer programs in Matlab, Fortran, or C/C++ are acceptable.

1. Forward upstream scheme.
(a) Use the finite difference scheme,

$$
\frac{u_{i, j+1}-u_{i, j}}{\Delta t}=-C \frac{u_{i, j}-u_{i-1, j}}{\Delta x}
$$

with $\Delta x=0.05$ and $\Delta t=0.01$, to obtain the solutions at $t=4,8,12,16$, and 20 . Plot them as a function of x along with the initial state, $u(x, 0)$. Please collect all plots in one figure. Note that the solutions at t $=4,8,12$ for this case have been discussed in class. (See Lecture 5 for reference plots.) At $t=20$, the analytic solution is identical to the initial state. Therefore, the initial state can also serve as the analytic solution at $t=20$ to verify the numerical solution.
(b) Choose $\Delta x=0.005$ and $\Delta t=0.001$ and obtain the solutions at $t=40,80,120,160$, and 200. Plot them along with the initial state, $u(x, 0)$, all in one figure.
(c) Choose $\Delta x=0.005$ and $\Delta t=0.01$ and obtain the solutions at $t=0.04$, and 0.08 . Plot them along with the initial state. Comment on the behavior of the solution. (We will revisit this case in future lectures on numerical stability.)
2. Forward downstream ("FTFS" in the textbook) scheme.

Use the finite difference scheme,

$$
\frac{u_{i, j+1}-u_{i, j}}{\Delta t}=-C \frac{u_{i+1, j}-u_{i, j}}{\Delta x}
$$

with $\Delta x=0.05$ and $\Delta t=0.01$, to obtain the solutions at $t=0.05,0.1,0.15$, and 0.2 . Plot them along with the initial state, $u(x, 0)$, all in one figure. (We have discussed in class that this is not a good scheme when $C>0$. The solution at $t=0.2$ is already quite corrupt and may contain very large values of u.)
3. "Forward in time, central in space" ("FTCS" in the textbook) scheme.

Use the finite difference scheme,

$$
\frac{u_{i, j+1}-u_{i, j}}{\Delta t}=-C \frac{u_{i+1, j}-u_{i-1, j}}{2 \Delta x},
$$

with $\Delta x=0.05$ and $\Delta t=0.01$, to obtain the solutions at $t=0.5,1,1.5$, and 2 . Plot them along with the initial state. Comment on the behavior of the solution. (We will revisit this case in future lectures on numerical stability.)
4. Lax-Wendroff scheme.

Use the finite difference scheme,

$$
\frac{u_{i, j+1}-u_{i, j}}{\Delta t}=-C \frac{u_{i+1, j}-u_{i-1, j}}{2 \Delta x}+\left(C^{2} \Delta t / 2\right) \frac{u_{i+1, j}-2 u_{i, j}+u_{i-1, j}}{(\Delta x)^{2}}
$$

with $\Delta x=0.05$ and $\Delta t=0.01$, to obtain the solutions at $t=0.5,1,1.5$, and 2 . Plot them along with the initial state. Compare the results with their counterparts in Prob. 3.

