Prob 1a Matlab code for the first case $(\Delta x=0.01, \Delta t=0.002)$

```
clear;
dx = 0.01; dt = 0.002; A = dt/ (2*dx);
x = [-1:dx:3]; N = length(x);
% -- initial condition
for i = 1:N
    if (x(i) <= 0)
        u(i) = 2;
        elseif (x(i) <= 1)
            u(i) = 2-x(i);
        else
            u(i) = 1;
    end
        uplot(1,i) = u(i);
end
% -- numerical integration in t
icount = 1;
for istep = 1:400
    for i = 3:N-1
            u_new(i) = u(i) -A*(u(i)^2) +A*(u(i-1)^2);
        end
        u_new(2) = u(2) - A* (u(2)^2) +A* (2^2);
        u_new(1) = 2;
        u_new(N) = 1;
        u = u_new;
        if (mōd(istep,200) == 0)
            icount = icount+1;
            for i = 1:N
                uplot(icount,i) = u(i);
            end
    end
end
% -- analytic solution at t = 0.4 and 0.8
for it = 1:2
    icount = icount+1;
        t1 = it*0.4;
        for i = 1:N
            if (x(i) <= 2*t1)
                u(i) = 2;
            elseif (x(i) < 1+t1) && (x(i) > 2*t1)
            u(i) = (2-x(i))/(1-t1);
            else
                u(i) = 1;
            end
            uplot(icount,i) = u(i);
        end
end
plot(x,uplot(1,:),'k-',x,uplot(2,:),'r-',x,uplot(3,:),'b-',...
            x,uplot(4,:),'r--',x,uplot(5,:),'b--','LineWidth',2)
axis([-1 3 0.5 2.5])
xlabel('x');ylabel('u(x,t)')
title('Case: \Deltax = 0.01 \Deltat = 0.002')
legend('t = 0','t = 0.4',' t = 0.8', 't = 0.4 analytic',...
            't = 0.8 analytic','Location','SouthWest')
```

Prob 1a Plot for the case with $(\Delta x=0.01, \Delta t=0.002)$

Prob 1a Plot for the case with $(\Delta x=0.02, \Delta t=0.01)$

Prob 1b Plot for the case with $v=0$

Prob 1b Plot for the case with $v=0.05$

Prob 1b Plot for the case with $v=0.2$

The solutions for Prob 1 b are obtained using $\Delta t=0.0001$. A smaller Δt should work for the cases with a smaller or zero viscosity.

Prob Ea
Plugging $x(x, t) \sim U_{k}(x) e^{i k j \Delta x}$ (ind x are the indices for x and t) into the finite difference formula, we obtain

$$
\frac{U_{k}(n+1) e^{i k j \Delta x}-U_{k}(n) e^{i k j \Delta x}}{\Delta t}=-c \frac{U_{k}(n) e^{i k(j+1) \Delta x}-U_{k}(n) e^{i k(j-1) \Delta x}}{2 \Delta x}
$$

or,
$\lambda_{k} \equiv \frac{U_{k}(n+1)}{U_{k}(n)}=1-\frac{\alpha}{2} e^{i k \Delta x}+\frac{\alpha}{2} e^{-i k \Delta x}$

$$
=1-i \alpha \sin (k \Delta x) \text {, where } \alpha \equiv \frac{C \Delta t}{\Delta x}
$$

$\Rightarrow\left\|\lambda_{k}\right\|^{2}=1+\alpha^{2} \sin ^{2}(k \Delta x)>1$
\Rightarrow Unconditionally unstable.
Prob Db
$\mathrm{E}(t) / \mathrm{E}(0)$ as a function of t, for the case with $\Delta t=0.005,0.01$, and 0.02 . (A separate plot for the case with $\Delta t=0.02$ is in the next page.) Note that $\mathrm{E}(0)$ itself is around 20.

Prob 2b
$\mathrm{E}(t) / \mathrm{E}(0)$ as a function of t, for the case with $\Delta t=0.02$. The artificial amplification becomes more severe with an increasing Δt (or an increasing α with a fixed Δx).

Extra information (you didn't have to calculate this): $\log _{10}[\mathrm{E}(t+\Delta t) / \mathrm{E}(t)-1]$ as a function of t for the three cases. We will discuss it in class.

