1. (a) For $\psi(x, y)$ defined on the domain of $0 \leq x \leq 5$ and $0 \leq y \leq 5$, solve the Poisson equation,

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=\Omega \tag{1}
\end{equation*}
$$

with Ω given as

$$
\begin{array}{rlrl}
\Omega(x, y) & =-\cos \left(0.5 \pi \delta_{1}\right), & \text { if } \delta_{1} \leq 1 \quad \text { (beware of the minus sign in front of } \cos \text {) } \\
& =1.2 \cos \left(\pi \delta_{2}\right), & & \text { if } \delta_{2} \leq 0.5 \\
& =0, & & \text { otherwise }
\end{array}
$$

where

$$
\delta_{1} \equiv \sqrt{(x-1.5)^{2}+(y-3)^{2}} \quad \text { and } \quad \delta_{2} \equiv \sqrt{(x-3)^{2}+(y-1.5)^{2}} .
$$

The boundary conditions are given as

$$
\psi(0, y)=0, \psi(5, y)=0, \quad \psi(x, 0)=0, \text { and } \psi(x, 5)=0 .
$$

Essentially, ψ vanishes at the boundary of the square domain. Using a grid system with $\Delta x=\Delta y=$ 0.05 , find the solution by the Point Gauss-Seidel iteration method (Sec 5.3.2 in the textbook) with the initial guess of $\psi(x, y) \equiv 0$. Make contour plots of the solution after 100, 200, 1000, and 2000 iterations. The recommended contour interval is 0.03 for ψ. Please also make a contour plot of $\Omega(x, y)$ as a reference.
(b) If ψ is the streamfunction of a 2-D incompressible flow, the 2-D velocity, $\mathbf{V} \equiv(u, v)$, is related to ψ by $u \equiv-\partial \psi / \partial y$ and $v \equiv \partial \psi / \partial x$. Use your solution of ψ after 2000 iterations in Part (a) to evaluate the corresponding (u, v) and make a plot of the vector field of \mathbf{V}. See Further Information in the next page for an example of using the "quiver" function in Matlab to plot a vector field.
2. Recognizing that the solution of the Poisson equation, Eq. (1), is the stead state solution (i.e., the solution as $t \rightarrow \infty$) of the following time-dependent PDE,

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}-\Omega \tag{2}
\end{equation*}
$$

we may alternatively obtain the solution of Eq. (1) by numerically integrating Eq. (2) to a large t. The finite difference formula for Eq. (2) can be constructed by setting the viscosity (v) to 1 and adding a simple term for Ω in the right hand side of the formula given in HW4-Prob 2. Using the same domain, boundary conditions, grid system (with $\Delta x=\Delta y=0.05$), and Ω as given in Prob 1, and the initial condition of $\psi(x, y, 0) \equiv 0$, find the numerical solution of Eq. (2) at $t=0.5,1,4$, and 8. (It is your job to choose an appropriate Δt for the numerical integration.) Make contour plots of $\psi(x, y, t)$ at those four times using the same contour levels you used in Prob 1. Does your solution for Prob 2 agree with the solution for Prob 1?

Further Information: The following code demonstrates the use of the "quiver" function in Matlab. It plots the vector field of $\mathbf{V}=(u, v)$, where $u(x, y)=-2 y$ and $v(x, y)=2 x$.

```
clear
x = [-2:0.2:2]; y = [-2:0.2:2];
for i = 1:length(x)
    for j = 1:length(y)
        u(i,j) = -2*y(j);
        v(i,j) = 2*x(i);
        x2d(i,j) = x(i);
        y2d(i,j) = y(j);
    end
end
quiver(x2d,y2d,u,v)
axis([-2 2 -2 2])
xlabel('x');ylabel('y')
```


