
MAE571, Fall 2014, HW1 Solutions

Prob 1

The solution can be obtained by numerically integrating (dx/dt, dy/dt) = (u, v), where (u, v) are already given. 
This has to be done repeatedly for a collection of initial points that circle the blob at t = 0. The positions of those 
initial points can be defined by xn(0) = 2 + 0.3 cos(φn), yn(0) = 0.3 sin(φn), and φn = n Δφ, n = 1, 2, 3, ... (this is 
just one of many possibilities). In the example of Matlab code (next page), we use 80 points to define the initial 
circle and use the Euler explicit scheme (with d/dt replaced by the first-order forward finite difference formula) 
with Δt = 0.0001 to perform the numerical integration for each point.

Plot:
(Black, green, and red are t = 0, 0.8, and 2.0)

 



Example of Matlab code for Prob 1

clear
% --- plot the vector field ---
x1d = [-4:0.4:4]; y1d = [-4:0.4:4];
for i = 1:length(x1d)
    for j = 1:length(y1d)
        x2d(i,j) = x1d(i);
        y2d(i,j) = y1d(j);
        u2d(i,j) = -x2d(i,j)+0.6*y2d(i,j)-1;
        v2d(i,j) = y2d(i,j)+0.4*x2d(i,j)*y2d(i,j);
    end
end
hold on
quiver(x2d,y2d,u2d,v2d,1)
axis([-4 4 -4 4])
% --- define the points that circle the dyed blob at t = 0 ---
N = 80; 
dphi = 2*pi/N; r1 = 0.3;
for n = 1:N
    phin = (n-1)*dphi;
    x0(n) = 2+r1*cos(phin);
    y0(n) = r1*sin(phin);
end
% --- integration in time to t = 0.8 ---
for n = 1:N
    xt(n) = x0(n);
    yt(n) = y0(n);
end
t = 0.8; dt = 0.0001; Nt = t/dt;
for it = 1:Nt
    for n = 1:N
       xplus = xt(n)+(-xt(n)+0.6*yt(n)-1)*dt;
       yplus = yt(n)+( yt(n)+0.4*xt(n)*yt(n))*dt;
       xt(n) = xplus;
       yt(n) = yplus;
    end
end
% --- continue integration in time to t = 2 ---
for n = 1:N
    xt2(n) = xt(n);
    yt2(n) = yt(n);
end
t = 1.2; dt = 0.0001; Nt = t/dt;
for it = 1:Nt
    for n = 1:N
       xplus = xt2(n)+(-xt2(n)+0.6*yt2(n)-1)*dt;
       yplus = yt2(n)+( yt2(n)+0.4*xt2(n)*yt2(n))*dt;
       xt2(n) = xplus;
       yt2(n) = yplus;
    end
end
% --- fill the dyed blob at t = 0, 0.8, and 2.0 ---
fill(x0,y0, [0 0 0]);
fill(xt,yt, [0 1 0]);
fill(xt2,yt2,[1 0 0]);
xlabel('x'); ylabel('y')
box on



Prob 2

The rate of change of the volume of a Lagrangian parcel is related to the divergence of the flow field by 
d(lnV)/dt = ∇⋅⃗v , where V is volume and v⃗ is the velocity vector. (See the slides for Lecture #3.)  For a 
2-D flow, the relation is reduced to d(lnA)/dt = ( ∇⋅⃗v )2D ≡ ∂u/∂x + ∂v/∂y, where A is the area. Note that this 
relation is purely kinematic and is true regardless of the property of the flow.  For Prob 1, from the given 
velocity, (u, v), we have ∂u/∂x + ∂v/∂y = 0.4 x.  Therefore, d(lnA)/dt = 0.4 x which is positive over the entire 
right half plane with a positive x. The area of the blob is not conserved. We expect the area of the blob to 
expand as it travels through the right half of the x-y plane. For the unsteady flow given in Prob 2, ∂u/∂x + ∂v/∂y 
= 0 at all time and all locations. The area of the blob is conserved.  (Both conclusions can be corroborated by 
direct numerical evaluations of the area of the blob at different times.)

Prob 3

With the conditions given in the problem, at t = 0 the only term in the right hand side that is non-zero is the y-
component of the solenoid term.  Therefore, the initial tendency for ωy can be readily derived as

      (
∂ω y

∂ t
)
t=0

=− j⋅(∇(
1
ρ )×∇ p) .

(Note that for t > 0 the above expression would not be true. More terms will contribute to the tendency.)  Since 
∇(1/ρ)=−ρ

−2
∇ρ and ∇ρ×∇ p  points "out of the paper" (i.e., in the negative y-direction) in Fig. 1, 

we have

       (
∂ω y

∂ t
)
t=0

=  – j • ( – j) (– ρ –2 ∣∇ρ∣∣∇ p∣ sin(θ) ) ,

where θ is the acute angle between the ∇ρ and ∇ p vectors.  From Fig. 1, we have ∣∇ρ∣ = 0.01/100, 
∣∇ p∣ =1000/100,  ρ = 1 (all in SI units) at the location marked by a star, and θ = 2°, which give the initial 

tendency as 

       (
∂ω y

∂ t
)
t=0

 =  – 3.49 x 10–5 s–2 . 

Prob 4

The report provided by the 1st team indicates that ∂T/∂x = – 0.1 °C/km.  The mobile unit, which moved at a 
speed of u = 5 m/s, observed dT/dt = – 1 °C/hr.  Combining these pieces of information, the local rate of change 
of T should be ∂T/∂t = dT/dt – u ∂T/∂x = 0.8 °C/hr.  Note that temperature actually increased with time at a 
fixed location.


