
                                        MAE571, Fall 2016   Homework #2 (13 points)

1. As a combination of the two simple examples discussed in Lecture 7, consider the flow system 
illustrated in Fig. 1 with a uni-directional flow u(y) bounded by two plates separated by a distance of H.
The flow is driven by an imposed, uniform, positive pressure gradient force in the x-direction (i.e., 
pressure decreases in the positive x-direction). In addition, the top plate is dragged by an external force 
at a constant velocity in the x-direction. The bottom plate is fixed in space. No-slip boundary 
conditions for velocity apply to both top and bottom boundaries. At the steady state, the flow is in the 
x-direction and is independent of x and z. The density (ρ) and kinematic viscosity (ν) of the fluid are 
constants. With this setup, the governing equation for u(y) is
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where the P. G. F. term is a positive constant, – ρ–1 (∂p/∂x) ≡ P > 0. Find the solutions for the system for
the two cases with (i) the top plate moving at a speed of U > 0, i.e., it is dragged to the right as shown 
in Fig. 1; (ii) the top plate moving at a speed of  – U, i.e., it is dragged to the left. Express the solution 
of u(y) in terms of the parameters U, P, H, and ν.  Giving ν = 10–6 m2/s, P = 2 ×10–6 m/s2, H = 0.2 m, 
and U = 0.01 m/s, plot u(y) (in m/s) as a function of y for the two cases (i) and (ii) described above. It is
recommended that the two curved be collected in a single plot for a comparison. Briefly discuss how 
momentum balance is maintained in the interior of the flow at the steady state for the two cases. 
(2 points)

                    
                Fig. 1 (The profile shown is arbitrary and not representative of the actual solution.)

2. (a) Solve Problem 2.4 in Acheson's textbook. (b) In addition, find the solution for u2(y), i.e., the 
velocity profile for the upper layer. (c) Giving g = 9.8 m/s2 and α = 9° (or 0.05 π radian), plot the 
vertical profile of u-velocity over the entire depth of the system, i.e., covering both layers, for the two 
cases: (i) h1 = 0.03 m, h2 = 0.02 m, ν1 = 0.0002 m2/s, and ν2 = 0.0001 m2/s; (ii) h1 = 0.01 m, h2 = 0.04 
m, ν1 = 0.0001 m2/s, and ν2 = 0.0003 m2/s;
[Note: This problem is a generalization of the example discussed in pp. 38-40 in Acheson's textbook. 
Please read the textbook for useful background.] (5 points)
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3. As discussed in class, in the interior of the flow the viscous term acts to redistribute momentum but 
does not destroy the total momentum of the fluid system. At the same time, the viscous term does 
dissipate kinetic energy, generally turning it into heat. Consider an idealized system used in class to 
isolate the effect of viscosity: A 1-D uni-directional flow, u(z,t), is defined on the unbounded domain of
– ∞ < z < ∞ and governed by
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where ν is kinematic viscosity. The natural boundary conditions are u → 0 and ∂u/∂z → 0 as z → ± ∞.  
It is assumed that the flow is uniform in the x- and y-direction.  Define the total momentum, M, and 
total kinetic energy, E, as 
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we showed in class that M is conserved for the system. On the other hand, E is not conserved. This is 
known as viscous dissipation (or Rayleigh dissipation), as discussed in a more general context in 
Section 6.5 of Acheson's textbook. 

(a) If the initial profile of u is given as u(z,0) = U exp[– (z/L)2] (a "Gaussian jet" as illustrated in Fig 1),
find the solution, u(z,t), that satisfies Eq. (1) and its associated boundary conditions.  Show that the 
solution indeed satisfies dM/dt = 0.  

(b) Consider the solution from Part (a) with U = 0.1 m/s, L = 0.1 m, and assume that the system 
consists of water with ρ = 1000 kg/m3, ν = 10–6 m2/s, and specific heat Cp = 4200 J/kg°C.  Assuming 
that the loss of kinetic energy by viscous dissipation that occurs within the 3-D box bounded by 
–0.2 m ≤ x ≤ 0.2 m, –0.2 m ≤ y ≤ 0.2 m, and –0.2 m ≤ z ≤ 0.2 m, is used to uniformly heat the water 
within that box, calculate the heating rate, dT/dt, for the water in the box, at t = 0 and t = 10 minutes.  If
the temperature in the box is 20°C at t = 0, what would be the temperature at t = 30 minutes?  (This can
be calculated by integrating the heating rate, dT/dt, over the 30-min period.)  Does viscous dissipation 
provide significant heating for the system? (5 points for Prob 3)

                                             Fig. 2

z

u(z,0)



4. A mini submarine is 10 m long and typically operates at a speed of 0.5 m/s undersea.  If one attempts
to test a 5:1 scaled-down model of the submarine (i.e., the toy model is 2 m long, with all other 
dimensions adjusted in proportion) in a wind tunnel, what would be the appropriate wind speed to 
impose in the tunnel in order for the flow around the toy submarine to emulate the flow around the real 
submarine moving at its typical speed?  Here, we assume that the flow (for either air or water) is 
incompressible, thermodynamic effects can be neglected, etc., such that "Reynolds number similarity" 
holds. (Since viscosity generally depends on temperature, you might assume a typical operating 
temperature of 20°C for air and water in the calculation.)  (1 point)
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