
MAE571, Fall 2016  Homework 5+6  (27 points)

Prob 1 (10 points)
Background: In our discussion of the Hele-Shaw flow, it was argued that when Re(h/L)2 << 1, the fluid 
system behaves somewhat like a 2-D irrotational flow with the stream function governed by Laplace's 
equation. Here, Re is Reynolds number, h is the vertical separation between two plates, and L is the 
horizontal scale of the flow. Since the solution of Laplace's equation cannot have a local maximum or 
minimum in the interior of the domain, it implies that there cannot be a closed streamline or separation 
of the flow. For example, Case (A) as shown in Fig. 1 (modified from Fig. 7.9 in the textbook) is 
typical of a Hele-Shaw flow, while Case (B) is not allowed for such a flow.  If the condition, Re(h/L)2 
<< 1, is not satisfied but the flow has a small to intermediate Reynolds number, one may expect a 
typical laminar flow like Case (B).  At a higher Reynolds number, the flow eventually becomes 
turbulent, close to Case (C).  

Task: Use Ansys-Fluent to simulate a flow through a 3-D two-section channel as shown in the right 
panel of Fig. 1.  A uniform velocity, u = U, is imposed at the narrow velocity inlet. An outflow boundary 
condition is imposed at the wider outlet as shown. A no-slip boundary condition for the velocity is 
imposed at all solid walls. The flow is incompressible with constant density and viscosity. With all 
other parameters fixed, when h is very small or when viscosity is very high (such that Re(h/L)2 << 1 is 
satisfied) the system is expected to approach a Hele-Shaw flow.  With a reduction in viscosity or an 
increase in h, the flow may transition from Hele-Shaw (Case (A)) to a typical viscous flow with an 
intermediate Reynolds number (Case (B)). Your simulations will focus on the flow regimes of Case (A) 
and (B), before the flow becomes turbulent.  (This will require some adjustments of the inlet velocity, 
etc.)  The following are the key tasks to complete:

(1) Demonstrate a pair of simulations which differ only in h and which show contrasting behaviors of 
Case (A) (under a smaller h) vs. Case (B) (under a larger h). Clearly describe the setup of the runs, 
including the values of all of the external parameters (inlet velocity, viscosity, all relevant dimensions 
of D1, D2, h, and the stream-wise length of the two segments of the channel).  Is the condition, 
Re(h/L)2 << 1, satisfied for the simulation that exhibits the "Case A" behavior?

(2) Take the specific simulation in Part (1) that behaves like Case (B) and increase the viscosity (but 
keep everything else fixed) until the flow transitions to Case (A). Record the value of the viscosity for 
this case. Is the condition, Re(h/L)2 << 1, satisfied for this case?

(3) In (1) and (2), when a "Case A" type of flow pattern is produced by a simulation, we expect that the 
condition, Re(h/L)2 << 1, is satisfied. Yet, a question remains whether one should use D1 or D2 as the 
horizontal length scale,"L", in that condition.  Note that D1 is the width of the fluid jet that is being 
injected into the wider channel, while D2 is the width of the wider channel itself (or, the largest possible 
horizontal extent of the flow).  Analyze the results of Part (1) and (2) and design/perform additional 
simulations to address this issue. For example, with a fixed D2, would it be more difficult to create a 
"Case A" type of flow with a decreasing D1?  What would be the behavior of the flow (close to Case A 
or Case B) when h ≈ D1 << D2 ?  
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Prob 2 (10 points)
(a) Based on the discussion in Section 7.9, use the equation for a thin film down a slope (Eq. 7.56) to 
solve the evolution of the free surface, h(x,t), when the initial shape of h(x,t) is given as

                     h(x,0) = 0.2 (x − 0.2 x2)  cm ,   if 0 ≤ x ≤ 5 cm ,
                               =  0                             ,   elsewhere.

See Fig 2 for a sketch of the initial state (not drawn to scale). Moreover, use the parameter setting of 
g = 980 cm/s2 for gravity, ν = 50 cm2/s for the kinematic viscosity (which nominally represents honey 
at room temperature), and α = 30° as the angle of the slope.  Plot h(x,t) as a function of x at 
t = 0, 0.5, 1, and 2.  It is recommended that all four curves are collected in a single plot.

(b) The equation used in Part (a), Eq. 7.56, was derived with the assumption that the angle α is not too 
small such that sin(α) and cos(α) are of the same order of magnitude. Given that ∂h/∂x ~ O(h/L) << 1, 
this allows us to eliminate the second term in the r.h.s. of Eq. (7.54), which greatly simplifies the final 
equation for h(x,t). If α is very small such that sin(α) ~  O(h/L) << 1 and cos(α) ~ O(1), the two terms in 
the r.h.s. of Eq. (7.54) will be comparable in magnitude such that both must be kept in the equation. In 
this case, try to keep the full Eq. (7.54) and complete the remaining steps in the derivation to obtain the 
governing equation for h(x,t) (as a generalization of Eq. 7.56) which is valid for any value of α. Discuss 
whether the method (analytic or numerical) that you used in Part (a) can be used to solve the 
generalized equation. 

Note for Part (a):
(i) According to Eq. (7.56) and related discussions in the textbook, if initially h = 0 at a certain location, 
that point will not propagate in the x-direction at all. This means that for the initial condition given in 
Part (a), the point at x = 0 and x = 5 cm will not move. Thus, for this problem, the fluid "blob" will 
deform within 0 ≤ x ≤ 5 cm but the whole blob will not just drift down the slop. However, the "center 



of mass" of the blob will move down the slope.
(ii) The problem can be solved either analytically by the Method of Characteristics, or by a 
straightforward numerical (e.g., finite difference) method.  The former requires solving a quartic 
equation which could be done either analytically or numerically.
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Choose one of the following three problems to solve (7 points)

Prob 3A.  Complete the exercise in Prob. 7.9 in the textbook. The following diagram illustrates the set 
up of the system.

Prob 3B. Complete the exercise in Prob 6.13 (proof of Reynolds Transport Theorem) in the textbook. 
Reynolds Transport Theorem is given in p. 206.

Prob 3C. Complete the exercise in Prob 8.5 in the textbook. Note that the sketch of velocity profile 
should be for the total u-velocity, i.e., u = U + u1, instead of just u1 .


