
                                            Convection and buoyancy oscillation

Recap:

We analyzed the static stability of a vertical profile by the "parcel method"; For a 
given environmental profile (of T0, p0, θ0 , etc.), if the density of an air parcel that's 
been carved out of the environment at z and lifted to z+∆z is less than the 
density of the environment at z+∆z, we have static instability.  By this argument, 
we were able to determine that the criterion for static stability is dθ 0  /dz > 0  (and 
instability dθ 0  /dz < 0).  

We can extend the analysis to quantify the positive/negative buoyancy 
experienced by the air parcel in the stable or unstable cases.

As before, we will use subscript "0" to denote an environmental variable and "p" 
to denote a variable following the air parcel.



          General argument (works for both liquid fluid and ideal gas)

The environment (and the air parcel) at level z is in hydrostatic balance:
(dp0/dz)at z =  ρ0(z) g  =  ρp(z) g

The environment at level z+∆z is also in hydrostatic balance:
(dp0/dz) at z+∆z =  ρ0(z+∆z) g  ,

For the air parcel at z+∆z, the net upward force is just the environmental 
pressure gradient,  (dp0/dz) at z+∆z (recall that the pressure of the parcel is the 
same as the pressure of the environment). The downward force acting on the 
parcel is − ρp(z+∆z) g.  Since ρp(z+∆z) ≠  ρ0(z+∆z), we now have an imbalance 
of the net force acting on the parcel.  z
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(continued)

The imbalance of force (acting on the parcel) at z+∆z would lead to acceleration. 
Bringing back Newton's law of motion, we have

           ρp(z+∆z) dw/dt =   (dp0/dz) at z+∆z  ρp(z+∆z) g  ,            Eq. (1)

where w is the vertical velocity of the parcel at z+z (so dw/dt is the acceleration 
of the parcel).  Eq. (1) is the basic equation of motion for the air parcel at z+∆z.

Since (dp0/dz) at z+∆z =  ρ0(z+∆z) g, Eq. (1) can be rewritten as

               dw/dt = g [ρ0(z+∆z)  ρp(z+∆z)]/ρp(z+∆z)                  Eq. (2)

We may define the r.h.s. of Eq. (2) as the buoyancy experienced by the 
parcel, b(z+∆z), then dw/dt = b.



Case 1: Liquid (nearly incompressible) fluid

In this case, since the density of the parcel is nearly conserved, we have 
ρp(z+∆z) = ρp(z) = ρ0(z)

⇒  Eq. (2) becomes   
                                 dw/dt = g [ρ0(z+∆z) ρ0(z)]/ρ0(z)

If z is small, Taylor series expansion leads to 
                  ρ0(z+∆z) ≈  ρ0(z) + (dρ0/dz) ∆z,
so we have
                                 dw/dt = {g (dρ0/dz)/ρ0} ∆z

Noting that w ≡  d(∆z)/dt (vertical velocity is the time derivative of the 
vertical displacement of the parcel), and define

                                 N2 ≡   {g (dρ0/dz)/ρ0} ,                         Eq. (3)
we have
                                d2(∆z)/dt2 = N2 (∆z) .                            Eq. (4)



(continued)

If N2 > 0, the solution of Eq. (4) is ∆z(t) = A sin(Nt) + B cos(Nt); The 
vertical displacement of the parcel oscillates in time ⇒ stable

In this case, N = [ {g (dρ0/dz)/ρ0}]1/2 is the Brunt-Väisälä frequency
(or buoyancy frequency); The period of oscillation is τ  = 2π/N.

If N2 < 0, the solution of Eq. (4) is ∆z(t) = A exp(Nt) + B exp(Nt); The 
vertical displacement of the parcel will "run away" ⇒ unstable

By the definition of N2, "N2 > 0" corresponds to dρ0/dz < 0. Indeed, a 
liquid (nearly incompressible) fluid is expected to be statically 
stable when the density of the fluid decreases with height.
                                 



Case 2: The atmosphere

As discussed before, potential temperature is now a more useful variable 
to consider.  Recall Eq. (2):

            dw/dt = g [ρ0(z+∆z) ρp(z+∆z)]/ρp(z+∆z) ,                 Eq. (2)

which is valid whether the fluid is liquid or an ideal gas.  

1. Note that the parcel that's been lifted to z+z has the same pressure 
as the environment at z+z; p0(z+∆z) =pp(z+∆z) = p*  (p* is a certain 
constant).  Using ideal gas law, we have

      ρ0(z+∆z) = (p*/R) [1/T0(z+∆z)] ,  ρp(z+∆z) = (p*/R) [1/Tp(z+∆z)] ,

therefore Eq. (2) can be rewritten as

             dw/dt = g [Tp(z+∆z) T0(z+∆z)]/Tp(z+∆z)                  Eq. (5)

(over to next page; not done yet)



(continued)

2. From the definition of potential temperature, we have

     0(z+∆z) = C T0(z+∆z) ,  p(z+∆z) = C Tp(z+∆z) , C ≡ (pS/p*)R/Cp 

(we have again used p0(z+∆z) =pp(z+∆z) = p*). Equation (5) can then
be rewritten as

     dw/dt = g [p(z+∆z) 0(z+∆z)]/p(z+∆z)  .                     Eq. (6)

We have gone the distance to transform Eq. (2) to Eq. (6) so we can now 
incorporate conservation of potential temperature (for the parcel that 
undergoes an adiabatic process) to turn the r.h.s. into a function of the 
environmental variables only

Since p(z+∆z) = p(z) =  0(z), Eq. (6) becomes

     dw/dt = g [0(z) 0(z+∆z)]/p(z)                                    Eq. (7)



(continued)

Again, we can define the r.h.s. of Eq. (7) as the buoyancy, b, at z+z.

Invoking Taylor series expansion, 0(z+∆z) ≈  θ0(z) + (dθ0/dz) ∆z, and 
replacing w by d(z)/dt, Eq. (7) becomes

         d2(∆z)/dt2 = N2 (∆z) ,                                             Eq. (8)
with
         N2 ≡  g (dθ0/dz)/θ0 .                                                 Eq. (9)

We have stability (parcel oscillates vertically) if N2 > 0, instability (parcel 
keeps rising) if N2 < 0.

The z in Eq. (8) can be either positive (upward perturbation) or negative 
(downward perturbation). If the vertical profile is unstable and we start 
with a downward perturbation, the parcel will keep sinking, and so on.



In Case 2, the stable situation, N2 > 0, corresponds to d0/dz > 0, which is 
consistent with our previous qualitative argument (see previous set of 
slides). 

Beware that in Case 1, the condition for stability is that density of 
the incompressible fluid decreases with height. In Case 2, the 
stability condition for the atmosphere is that potential temperature 
increases with height.

Note as well that in Eq. (2) we have ρ0(z+∆z) ρp(z+∆z) (environment 
minus parcel) in the numerator for buoyancy, while in Eq. (6) we have 
θp(z+∆z) θ0(z+∆z) (parcel minus environment) in the numerator. 
Without a detailed proof, we should mention that under some further 
assumptions one can indeed obtain an approximation for the atmosphere 
as
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where the prime indicates "perturbation" and bar indicates "mean" (we 
should define them later).



                
                     Reasons why we like potential temperature:

         (1) θ  is a proxy of entropy; A parcel that undergoes an adiabatic
              expansion or contraction conserves θ , just like it conserves
              entropy S.

         (2) θ  has the unit of temperature and can be physically related
              to temperature following an adiabatic ascent or descent
              of the air parcel.

         (3) The "perturbation" of potential temperature, θ ', is approximately
              proportional to (the negative of) the perturbation of density, '.
              Therefore, for various applications we could also regard  as a
              proxy of density.



                Potential temperature as a vertical coordinate

Previously, we noted that under hydrostatic balance pressure increases 
monotonically with height 
 One-to-one correspondence between p and z
"Pressure" can replace "height" as an alternative vertical coordinate

if an atmosphere is statically stable, d0/dz > 0 everywhere, then there is 
also a one-to-one correspondence between 0 and z 
One may use potential temperature as an alternative vertical
     coordinate

As before, one can apply chain rule to do the coordinate transformation.
For example, 
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and so on.


