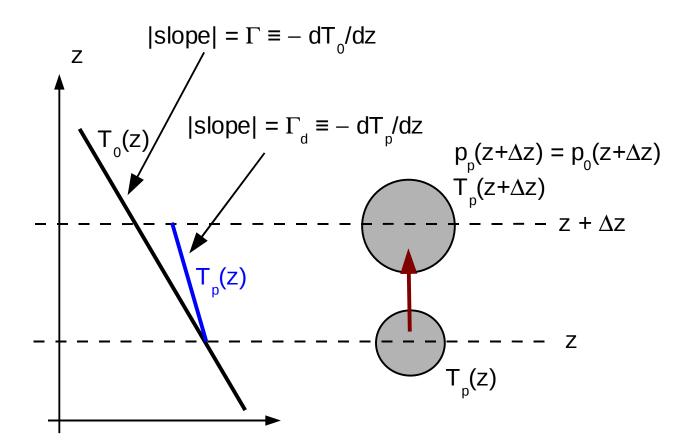
Adiabatic lapse rate and static stability

Let's now consider static stability in terms of temperature profile, $T_0(z)$

Recall from our previous discussion that the pressure of the parcel always adjusts to the environmental value; $p_0(z+\Delta z) = p_p(z+\Delta z) = p^*$ (p* is a certain constant). By ideal gas law, if $T_p(z+\Delta z) > T_0(z+\Delta z)$ then $\rho_p(z+\Delta z) < \rho_0(z+\Delta z)$, the lifted parcel is lighter than its environment and will continue rising.



To determine stability, it suffices to compare the "environmental lapse rate" for temperature

 $\Gamma \equiv - dT_0/dz$,

with the "adiabatic lapse rate" for the parcel that undergoes an adiabatic ascent or descent

 $\Gamma_{d} \equiv - dT_{p}/dz$.

If $\Gamma > \Gamma_d$ (environmental temperature decreases upward more rapidly than the rate of adiabatic cooling for the parcel following an adiabatic ascent), a parcel that's been lifted to $z+\Delta z$ will be warmer, and lighter, than its environment \Rightarrow The ascent will continue to a greater height \Rightarrow Instability

We now have an alternative form of the criterion for static stability:

 $\Gamma < \Gamma_d$: Stable $\Gamma > \Gamma_d$: Unstable

We will soon demonstrate that this criterion is identical to the criterion based on $d\theta_0/dz$ that we derived before.

Determine the adiabatic lapse rate, Γ_d

As usual, we use the subscript "p" to denote "parcel". The d/dz in this page is understood as the rate of change following the ascent/descent of the parcel.

Since potential temperature is conserved for the parcel following an adiabatic ascent/descent, we have

 $d\theta_p/dz = 0$.

From the definition of potential temperature, we also have,

$$\begin{split} d\theta_{p}/dz &= d/dz \{ T_{p} (p_{S}/p_{p})^{R/Cp} \} \\ &= (p_{S}/p_{p})^{R/Cp} (dT_{p}/dz + g/C_{P}) \\ &= (\theta_{p}/T_{p}) (dT_{p}/dz + g/C_{P}) . \end{split} \quad \text{Eq. (1)}$$

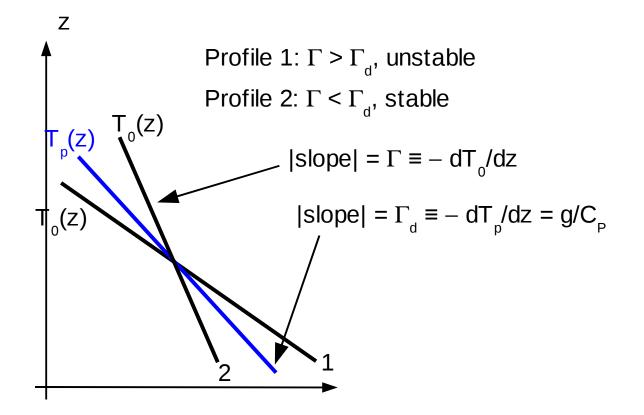
Therefore, from $d\theta_p/dz = 0$ we have $dT_p/dz = -g/C_P$, or

 $\Gamma_{d} \equiv -dT_{p}/dz = g/C_{P} \approx 10 \text{ °K/km}$

For the environment, we can likewise derive an expression of $d\theta_0/dz$ in terms of Γ and Γ_d :

$$\begin{aligned} d\theta_0/dz &= d/dz \{ T_0 (p_S/p_0)^{R/Cp} \} \\ &= (\theta_0/T_0) (dT_0/dz + g/C_P) \\ &= (\theta_0/T_0) (dT_0/dz - dT_p/dz) \\ &= (\theta_0/T_0) (\Gamma_d - \Gamma) . \end{aligned}$$
 Eq.(2)

Since T_0 and θ_0 are always positive, we have now established that the stability criterion, $d\theta_0/dz > 0$, is equivalent to $\Gamma_d - \Gamma > 0$.



We may rewrite Eq. (2) as

$$d \ln \theta_0/dz = (\Gamma_d - \Gamma)/T_0$$
,

or

$$N^2 \equiv g d \ln \theta_0 / dz = g(\Gamma_d - \Gamma) / T_0$$
.

Therefore, for the stable case ($\Gamma_d - \Gamma > 0$), the buoyancy frequency can be determined by the environmental temperature profile as

 $N = \{g(\Gamma_d - \Gamma)/T_0\}^{1/2}$.