
                                Equivalent potential temperature

Recall that dQ = CP dT  dp = CP T d ln .  For a dry air parcel undergoing an 
adiabatic ascent, dQ = 0   d= 0 , potential temperature is conserved.

For a moist air parcel, before condensation occurs, we still have dQ = 0 and
d= 0. Once condensation occurs (when the parcel is lifted to a level with 
sufficiently cold temperature), by latent heat release we will have dQ > 0 for the 
air parcel is no longer conserved.
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    Saturated moist adiabatic process ; latent heat release

    Note that qs generally decreases with temperature.  If qs decreases by 
    the amount of qs as an air parcel is lifted from z to z+z, the amount of 
    water vapor that has to condense into liquid water is mv = mtot qs  
    (recall that q  mv/mtot , where mv is the mass of water vapor and mtot is the
     mass of the whole air parcel; furthermore, q = qs since the air is saturated).
    The amount of latent heat release due to condensation is Q* =  L mv ,
    where L is the latent heat constant (for condensation).  We have a negative
    sign here because we define a positive Q* as heating for the air parcel.  
    Note that mv is negative (the amount of water vapor decreases as qs

     decreases) so Q* is positive.  Alternatively, we can state that Q* = L mw ,
    where mw is the gain of the mass of liquid water.

    The heating per unit mass for the air parcel is Q = Q*/mtot = L qs

    In differential form, we have 

        dQ =  L dqs   

     We may freely exchange q and qs as long as the parcel remains saturated.



        We therefore arrive at the modified thermodynamic equation for
        the saturated moist adiabatic process,

               L dqs =  CP T d ln                                      Eq. (1)

        or    L /CP) dqs/T =  d ln                                  Eq. (1a)

        Although L and CP varies slightly with temperature, we keep them
        constant for simplicity.  (L  2.5 x 106 J kg-1 at 0 C)
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 under a wide range of conditions (see previous set

  of slides), we have d(qs/T) = (qs/T) (dqs/qs  dT/T)  (qs/T) (dqs/qs) = (dqs)/T,
  so Eq. (1a) can be approximated by 

               d(Lqs/CPT) =  d ln  ,
or

              d ln [  exp(Lqs/CPT) ] = 0



   Define equivalent potential temperature as

            e   exp(Lqs/CPT) ,

   we then have

           d ln e = 0 ,

   i.e., e is conserved following the saturated moist adiabatic 
   ascent of an air parcel.
           



                            Saturated adiabatic lapse rate

Following the ascent of a saturated air parcel, we have

       L dqs =  CP T d ln  .                                  Eq. (1) (repeat)

Here, it is understood that the qs,T and  are the quantities associated with the 
air parcel. We will omit the subscript "p" used in our previous discussion for dry 
adiabatic lapse rate.  Also, recall that d(ln )/dz = T-1(dT/dz +d), where d = g/CP 

is the dry adiabatic lapse rate.  We will now define s   dT/dz, where the dT/dz 
here is the rate of change of temperature following the parcel. our goal is to 
uncover the relation between s and d.  Since qs depends on T and p (recall 
that qs  es/p where es depends on T) , we have
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In the above derivation, we have used the hydrostatic equation in step (1), ideal 
gas law in step (2), and the approximate form of Clausius-Clapeyron equation, 
es(T) = A exp(T) (as in M&P textbook) in the last step in obtaining Eq. (2). 
Although in the formula for es(T) the "T" is in C, we can replace it by a T in K 
and still obtain the relation of d ln(es)/dT = .  The gas constant "R" in Eq. (2) is 
for the mixture of dry air and water vapor. It deviates slightly from the gas 
constant for dry air, Rd, but this is not critical for our discussion. 

Using Eq. (2), Eq. (1) can be rewritten as
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This is Eq. (4-28) in M&P.  The factor in the r.h.s. is generally less than 1, so 
s < d.  This is solely expected since latent heat release by condensation would 
compensate adiabatic cooling, such that a saturated moist air parcel would not 
cool as rapidly as a dry parcel as they are lifted upward by the same distance.



Finally, we can determine the static stability of the environmental profile 
by comparing the environmental lapse rate with s.
                                                 
For dry air

                   < d :  Stable
                > d :  Unstable

For saturated moist air

                 < s :  Stable
                > s :   Unstable

                 d   dTp/dz = g/CP   10 K/km
        
              s  <  d  , s can vary from 3 to close to 10 K/km
                 



    An environmental profile, T(z), could be stable in the dry sense but still
    unstable in the moist saturated sense. (See illustration below.) Physically, 
    this is because latent heat release provides extra buoyancy for the air 
    parcel to continue its ascent.  Therefore, the existence of water vapor in the 
    atmosphere generally help enhance convection.
    Moist convection is usually more energetic than dry convection.
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