
                                                      MAE578, Spring 2015  Homework #5

1. This problem is concerned with the structure of large-scale horizontal wind field within planetary 
boundary layer.  Recall that the "three-way" balance we discussed in class can be written as
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where K is the "eddy viscosity" and all other notations are standard. For this problem (both Part (a) and (b)), 
we consider the simpler case when there is no pressure gradient force in the x-direction while the pressure 
gradient force is uniform in the y-direction.  (Note that the pressure gradient force in the y-direction could 
still vary with height, as is the case in Part (b).)  We will consider the pressure field as given and use that 
information to determine the wind field.

(a) (25%) Re-derive and verify the Ekman solution we discussed in class by obtaining the solution for u(z) 
and v(z) from Eqs. (1) and (2), plus the boundary conditions,

             (i)  (u, v) → (ug, 0)  as  z → ∞     (ug ≡ –(∂p/∂y)/ρf ; It is understood that vg= 0.)

            (ii)  (u, v) = (0, 0)  at z = 0 .

Moreover, for this part only, assume that the pressure gradient force in y-dirction is independent of height. 
Write your solution in terms of ug, K, and f.  Make a plot of the vertical profiles of u(z) and v(z). For this 

plot, it is recommended that (u,v) be rescaled with ug and z be rescaled with (2K/f)1/2.  In addition, make a 

plot of the "Ekman spiral" in the u-v plane by tracking the tip of the horizontal wind vector with increasing 
height. Please also superimpose wind vectors at selected heights.

(b) (25%) Instead of assuming that the y-component of pressure gradient force is independent of height, we 
now consider the case when it increases with height. Specifically, it is given as
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where G and H are two adjustable parameters.  The corresponding boundary conditions are

             (i)  (u, v) → (G/f, 0)  as  z → ∞     
            (ii)  (u, v) = (0, 0)  at z = 0 .

Solve this problem and express the solution (u(z), v(z)) in terms of G, H, K, and f.  At 30°N and under the 
parameter setting with G/f = 5 m/s and (2K/f)1/2 = 1000 m, plot the vertical profiles of u(z) and v(z) for the 
three cases with H = 500, 1000, and 2000 m. (Note that G/f is ug as z → ∞, and (2K/f)1/2 is the typical scale of 

the thickness of planetary boundary layer from the classic Ekman solution in Part (a).)  Discuss how the 
value of H affects the solution. For example, discuss how the thickness of boundary layer scales with (2K/f)1/2 

and/or H for the cases with H >> (2K/f)1/2, H ≈ (2K/f)1/2, and H << (2K/f)1/2.
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2. (30%) We have previously learned about the "moist static energy", ES ≡ CPT + gz + Lq (see Sec. 4.5.2), 
which can be regarded as the energy (per unit mass) of an air parcel in the absence of any motion.  Taking 
into account atmospheric motion, the total energy would be E = ES + EK, where EK ≡ (1/2) |v|2 is kinetic 
energy (v is the 3-D velocity vector; cf. Eq. (8-14)). Using the collection of figures in Chapter 5 for the 
climatological mean state of the atmosphere as a function of latitude and height (or pressure), try to estimate 
the magnitude of the individual components of E at selected latitudes and pressure levels and fill the blanks 
in the following table. Comment on your results.  The purpose of this exercise is for you to become familiar 
with the climatological state presented in Chapter 5.  We will revisit energy balance in Chapter 8.  
(Note: For this exercise, please use q instead of qS in the calculation for ES.)

     CPT       gz       Lq    (1/2)|v|2       E

@ Equator and 
1000 mb level

@ Equator and 
200 mb level

@ 45°N and 
1000 mb level

@ 45°N and 
200 mb level

           All quantities are in m2/s2

Note: (1) The height field shown in Fig. 5.13 is the "anomaly", i.e., departure from a certain global-mean 
value. More precisely, if we denote the anomaly as z*(ϕ,p) (ϕ is latitude) and the global mean as Z(p), then 
the total height is z(ϕ,p) = z*(ϕ,p)+Z(p).  It is this total height that should be used for evaluating the "gz" 
term.  For this exercise, let's assume that the global mean Z(p) is 12 km at p = 200 mb and 0 km at p = 1000 
mb. (2) Strictly speaking, the v for the evaluation of kinetic energy should be the three-dimensional velocity. 
Since for global-scale circulation the "zonal component" (u) tends to be greater than v and w, for this 
exercise we will approximate |v|2 by |u|2, where the magnitude of u can be inferred from its "zonal mean" in 
Fig. 5.20.  

3. (20%)  Solve Prob 9 in Chapter 7 of the textbook.  The "Winter Pole" in that problem will be regarded as 
the South Pole. (Note that the Coriolis parameter, f, is negative in the Southern Hemisphere.)
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