Solar radiation - the major source of energy for almost all environmental flows

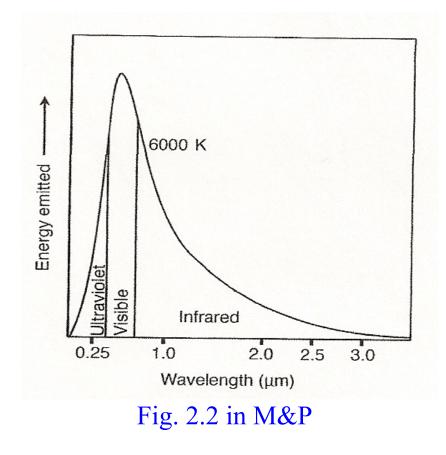
Radiation = electromagnetic waves

Different types of heat transfer:

Heat conduction by molecular diffusion (no large-scale transport of mass is needed; think the change of temperature within an iron bar with one end attached to a furnace)

Heat transfer accomplished by mass transport (e.g., convection, turbulent heat transfer in fluids)

Radiative heat transfer - most ubiquitous


Every object in the universe emits radiation according to its temperature

For a "blackbody" in thermodynamical equilibrium, the intensity of radiation is governed by Planck function

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5 (\exp^{[\frac{hc}{\lambda kT}]} - 1)}$$
 Eq. (A-1) in M&P textbook

h = Planck's constant, k = Boltzmann's constant, c = speed of light, T = temperature (in degK)

For a given temperature (of the object under consideration), $B_{\lambda}(T)$ is a function of the "wavelength" λ (of electromagnetic waves). The radiation emitted by the object forms a "spectrum". Example: The sun has a surface temperature of ~ 6,000 K. The following is the "spectrum" of radiation (electromagnetic waves) emitted by the sun, or by any object that has a temperature of 6,000K.
-- The "peak" of the spectrum is in the visible band

Speaking of electromagnetic waves ...

 $\lambda \sim 0.01 \ \mu m$ X-ray $\lambda < 0.3 \ \mu m$ Ultraviolet radiation (harmful to humans)

 $0.3 \ \mu m < \lambda < 0.7 \ \mu m$ Visible light (that human eyes can "see")

 $\lambda > 1.0 \,\mu m$ Near-infrared, Infrared

 $\lambda \sim 10000 \,\mu\text{m}$ (1 cm) Microwave

 $[0.3 \,\mu\text{m} - 0.7 \,\mu\text{m}]$: [purple, blue, green, yellow, red]

The peak of the radiation spectrum shifts to longer wavelength as temperature decreases

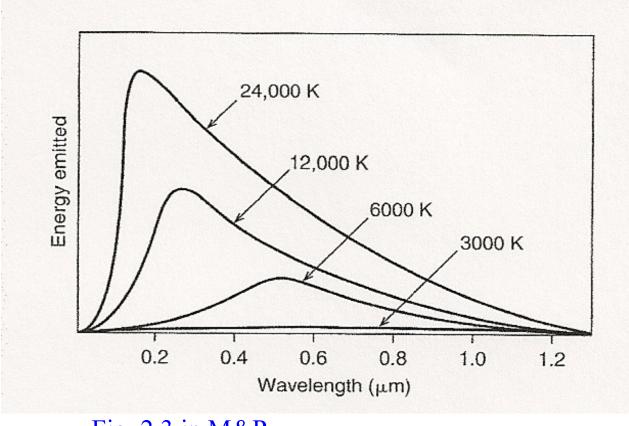


Fig. 2.3 in M&P

A star with a surface temperature of 10,000K would look more blue, while a star with surface temperature of 4,000K will look more red.

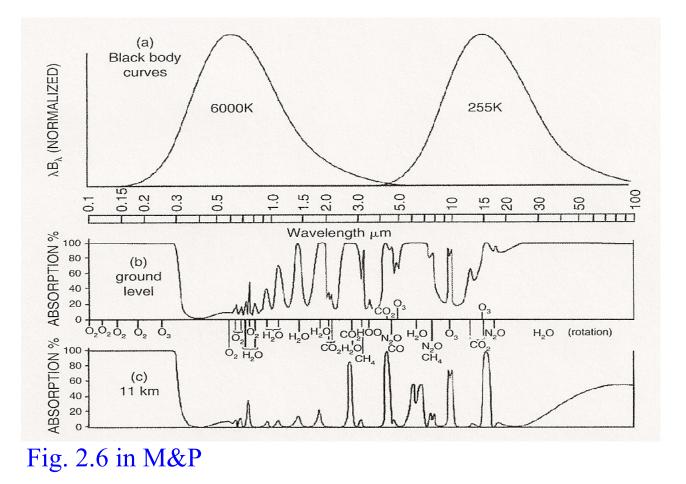
This behavior is anticipated from Planck's function

$$B_{\lambda}(T) = \frac{2hc^2}{\lambda^5 (\exp^{[\frac{hc}{\lambda kT}]} - 1)}$$

The peak of the spectrum occurs at the wavelength λ where

$$\frac{\partial B_{\lambda}(T)}{\partial \lambda} = 0$$

Straightforward math would lead to a formula of the peak wavelength as a function of temperature (sometimes called "Wien displacement law"), which would readily corroborate the behavior shown in the previous slide. We will leave this to a homework.


What about the Earth?

Earth's global mean surface/atmospheric temperature is $T \sim 255$ K

-- The peak wavelength of the radiation emitted by the Earth is $\lambda \sim 10 \ \mu m$, in the infrared range not visible to human eyes

That Earth is at all visible from space is because it reflects sun light, which contains a substantial visible band

Human body (T ~ 300K) also emits infrared radiation not visible to human eyes; We cannot "see" each other at night (unless aided by artificial light, or by a pair of infrared goggles) **The atmosphere absorbs solar and terrestrial radiation in a highly wavelength-dependent manner.** This has many important implications for Earth's global environment and life on earth in general.

Beware that the radiation spectra in the top panel are "normalized". In actuality, solar radiation is much stronger than terrestrial radiation.

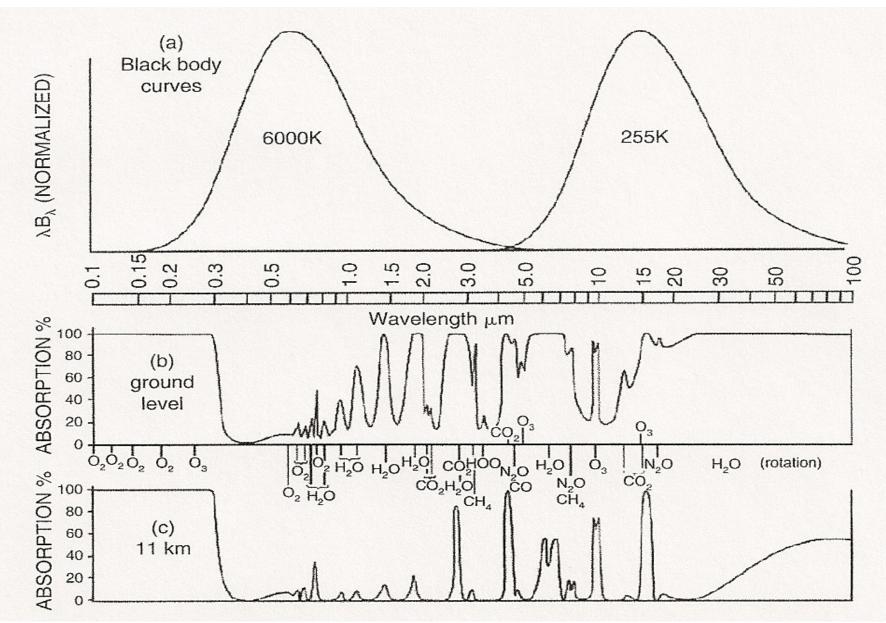


Fig. 2.6 in M&P (repeat)