
MAE578, Spring 2019 Homework #4  

See HW1,2 for rules on collaboration and guideline on submission of report  

 

Prob 1. (35%) In the vicinity of the City of Mesa, marked by a circle in Fig. 1, a rectangular grid of 

meteorological stations was set up to collect observations of temperature, velocity, etc.  The spacing of the 

stations is 50 km in both x- and y-direction. At 9 PM of a certain day, the observation of the flow at the level of 

z = 3 km indicates that (see illustration in Fig. 1) (i) The horizonal velocity is uniform in space and points to 

northeast with a speed of 3 m/s. The wind vectors (red arrows) form a 45° angle with the x-axis, and (ii) The 

temperature contours (bold gray lines) are straight and equally spaced lines that form a 30° angle with the x-

axis. The magnitude of temperature gradient is as shown in Fig. 1. At the level of z = 3 km, the temperature at 

Mesa is 9°C.  Moreover, from the observations at other vertical levels, it has been determined that (iii) The lapse 

rate of temperature is Γ = – ∂T/∂z = 6 °C/km in the area of interest.  
 

From the observations of the horizontal velocity at multiple vertical levels, your colleagues have performed a 

vertical integration of the horizontal wind divergence to determine that (iv) The vertical velocity at z = 3 km is 

approximately –5 cm/s (i.e., a subsidence), uniformly over the area of interest.  Lastly, your colleagues have also 

performed a radiative transfer calculation to estimate that (v) The radiative heating rate �̇� 𝑐𝑝⁄  of the atmosphere 

at z = 3 km is approximately –2 °C/hour (i.e., it is actually cooling over time), uniformly over the area of 

interest.  Using the information from (i)-(v) and ignoring the effect of moisture, try to make a prediction of the 

temperature at 10 PM, at z = 3 km at the location of Mesa.  You may use the the standard temperature equation 

in z-coordinate: 
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where 𝛤𝑑 ≡ 𝑔 𝑐𝑝⁄  is the dry adiabatic lapse rate.  [We expect this to be a simple exercise of integrating Eq. (1) 

numerically forward by one time step, with Δt = 1 hour.] 
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Prob 2 (45%) Consider a system of an air flow blowing through a street canyon in an urban area, as illustrated 

in Fig. 2. The street canyon is parallel to the y-direction. Over a certain period of time, an approximately steady 

state is observed with the following characteristic scales for the flow: 

 

• The horizontal length scales in x- and y-direction are Lx ~ 10 m and Ly ~ 100 m, respectively. The vertical 

length scale is H ~ 10 m. 

 

• The scales for the velocity components in x- and y-direction are U ~ 1 m/s and V ~ 10 m/s, respectively. The 

scale of vertical velocity is W ~ 0.1 m/s. 

 

(a) Assuming that density is constant, ignoring Coriolis effect but including the effect of gravity, the steady 

version of Navier-Stokes equations and continuity equation (all in z-coordinate) is given as (all notations are 

standard) 
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Perform a scale analysis for all terms in the above 4 equations. Clearly write out the scale for each term. (You 

may assume that pressure gradient force balances with the dominating term(s) among all other terms in the 

equation.)  Then, reduce the four equations, Eq. (2)-(5), to a simplified version in which only the leading-order 

terms in each equation are retained. 

 

(b) From the analysis in Part (a), determine the order of magnitude of the ratio, |−𝜌−1𝜕𝑝/𝜕𝑦|/|−𝜌−1𝜕𝑝/𝜕𝑥| .    
(This is the ratio of the "magnitude of PGF in y-direction" to "magnitude of PGF in x-direction".) Is the result 

consistent with the given observation that the velocity field is dominated by a strong flow in the y-direction? 

 

(c) If Coriolis force is introduced to the horizontal components of the momentum equations, the first two 

equations in Part (a) would become 
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where f = 2 Ω sin(φ) is the Coriolis parameter, Ω = (2π)/(1 day) is the rotation rate of the Earth, and φ is latitude 

(φ = 0 at the equator, φ = π/2 at the North Pole).  Assume that the urban site for this system is located at 30°N. 

Repeat the scale analysis in Part (a) for these two equations. (Essentially, just add the scales for the Coriolis 

terms.)  For this system, do the Coriolis terms contribute to the leading-order balance of horizontal momentum? 
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Prob 3 (20%) If the atmosphere is approximately in hydrostatic balance in the vertical direction, pressure (p) 

can be used as an alternative vertical coordinate. We have discussed the benefit of writing the governing 

equations in p-coordinate. For example, the pressure gradient force (PGF) in x-direction under z-coordinate can 

be transformed into its counterpart in p-coordinate as  
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(the l.h.s. is the PGF in z-coordinate, and r.h.s. the PGF in p-coordinate), where Φ = gz is geopotential. Density 

is invisible in the PGF in p-coordinate, because the information of vertical distribution of mass has been 

absorbed into the coordinate system.  As mentioned in the lectures, if the atmosphere is statically stable, i.e., 

∂θ/∂z > 0, one could possibly choose potential temperature (θ) as another alternative vertical coordinate. Show 

that the PGF in x-direction can be expressed in θ-coordinate as  
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where E = CpT + gz is the dry static energy. In other words, the horizontal component of PGF is equivalent to 

the horizontal gradient of dry static energy on an isentropic surface. (We only consider the x-component of PGF 

but the story for the y-component is the same.) 

 

  

 

 

  


