MAE 578, Spring 2019, HW5 solution
Prob 1
The flow is axially symmetric with the tangential velocity
$V_{r}=\left(\frac{2 \Delta p}{f \rho R^{2}}\right) r \exp \left[-(r / R)^{2}\right]$,
where $f=2 \Omega \sin \left(-45^{\circ}\right)$ and $\Omega=2 \pi /(86400 \mathrm{~s})$. Since $f<0$, we have $V_{r}<0$. The circulation is clockwise around the low-pressure center. The maximum wind speed occurs at $r=R / \sqrt{2}=353.5 \mathrm{~km}$. At that radius, the magnitude of velocity is $27.8 \mathrm{~m} / \mathrm{s}$ if the density of air is given as $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ (typical value at lower troposphere).

Plots:

Prob 2
$\Delta Z=1412 \mathrm{~m}, \quad u=40.4 \mathrm{~m} / \mathrm{s}$
Prob 3
The u-velocity at the $1-\mathrm{mb}$ level is $127.9 \mathrm{~m} / \mathrm{s}$.
Prob 4
The depth of the river at the eastern boundary exceeds that at the western boundary by 0.52 mm .

