
Prob 1

The flow is axially symmetric with the tangential velocity

$$V_r = \left(\frac{2\Delta p}{f\rho R^2}\right) r \exp[-(r/R)^2],$$

where $f = 2\Omega \sin(-45^\circ)$ and $\Omega = 2\pi/(86400 \text{ s})$. Since f < 0, we have $V_r < 0$. The circulation is clockwise around the low-pressure center. The maximum wind speed occurs at $r = R/\sqrt{2} = 353.5 \text{ km}$. At that radius, the magnitude of velocity is 27.8 m/s if the density of air is given as 1.2 kg/m³ (typical value at lower troposphere).

Plots:

Prob 2

 $\Delta Z = 1412 \text{ m}, \quad u = 40.4 \text{ m/s}$

Prob 3

The *u*-velocity at the 1-mb level is 127.9 m/s.

Prob 4

The depth of the river at the eastern boundary exceeds that at the western boundary by 0.52 mm.