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Earth rotation: Ω = 1 cycle/day  = 0.000011 Hz
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        Large-scale flow : 
        v perpendicular to ∇ p    
        Rotation dominates (vorticity >> divergence) even if flow is not turbulent

HIGH LOW

L ~ 1000 km  T > 1 day



        We will see that the transformation of Navier-Stokes equations
        to a rotating frame is equivalent to adding a "Coriolis force"
        (and a "centrifugal force", which is however very small) to the
        momentum equation.



                      Navier-Stokes equations in a rotating coordinate system
                                       Coriolis & centrifugal forces



  Basic setup: Consider a vector, r , that rotates 
  with angular velocity Ω and with its axis of
  rotation pointing at the direction of  (where
  is a unit vector)

 S ≡ r t t  − r t 
  
  ≡   is the rotation vector

   =   t

 ∣S∣=∣AB∣    (as   0 )
  → ∣S∣=∣AB∣  t

  S⃗ is normal to the plane spanned by r⃗  and Ω⃗  

   → S =
×r t 

∣×r t ∣
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   where S is the unit vector in S direction

  OA ⊥ AB → ∣OA∣= Ω̂⋅⃗r (t)
    → ∣AB∣
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    → ∣AB∣=∣Ω̂× r⃗ (t)∣  →  ∣S∣=∣ ×r t ∣ t =∣×r t ∣ t          (See Appendix A at end of slide set)
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    Therefore, S ≡∣S∣S = ×r t   t , or 
r t t  − r t 

 t
= ×r t 

    As  t 0 , we have 
d r
d t

= ×r

    This is the rate of change for the r-vector as measured in the inertial frame.
    More precisely (the subscript "in" indicates "inertial" frame),

   
d r
d t


i n

= ×r .                                                                 (1)

    An observer that rotates at the angular velocity and direction of   will see the 
    r-vector as steady, not moving at all, i.e., (the subscript "rot" indicates rotating frame),

    
d r
d t


r o t

= 0 .                                                                      (2)

    Comparing (1) and (2), we see that the difference between 
d r
d t


i n

and 
d r
d t


r o t

is ×r ,
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    Note that the r here can be any vector.



1. Velocity

    If r is the vector of the location of an air parcel,
d r⃗
d t

would be its velocity so we have

     v i n = vr o t  ×r .

2. Acceleration

    Now, we need to apply the relation, 
d
d t


i n

= [
d
d t
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 ×] , to v i n :
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3. Equation of motion

    Since Newton's law is 
d v i n

d t

i n

=
F
m

, in the rotating frame we have

    
d vrot

d t

r o t

=
F
m

− 2 × vrot − ××r



Since 
F
m

=−
1


∇ p − g z  for a fluid parcel (ignoring molecular viscosity - recall the scale 

analysis for large-scale flows), the momentum equation for the fluid parcel under the rotating frame 
can now be written as

     
d v
d t

 =−
1


∇ p − g z − 2 ×v
 A

− × ×r
B

.

The momentum equation in the rotating coordinate system has two extra terms:

Term (A): Coriolis force    Term (B): Centrifugal force

Although those terms are sometimes called "fictitious forces" (that arise from a coordinate 
transformation), they are real in that they absorb or replace the effect of Earth rotation. They are 
perpendicular to the velocity vector so can only act to change the "direction" of motion 
but not the net kinetic energy of the flow.

Expanding 
d v
d t

 into its Eulerian form, we have Navier-Stokes equations in the rotating frame:

    
∂v
∂ t

=− v⋅∇v −
1


∇ p − g z − 2 ×v
A

− × ×r
 B

.



   Appendix A

   We will show that ∣A∣2∣B∣2 − A⋅B2 =∣A×B∣2 .

   By definition, ∣A×B∣=∣A∣∣B∣sin , where θ is the angle between A and B vectors,
   while A⋅B =∣A∣∣B∣cos .  Thus, we have
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2
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