In the following examples, we will adopt the notation in the textbook. The unit grid size (" Δx " in our lecture) is denoted as h. It is also understood that, for a uniform grid, $f(x) \rightarrow f\left(x_{i}\right), f(x+h) \rightarrow f\left(x_{i+1}\right)$, $\mathrm{f}(\mathrm{x}-\mathrm{h}) \rightarrow \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)$, and so on. (The first two examples are relevant to Prob 2 and 3 in our HW4.)

Example 1. (Prob 6.6 in textbook)
Derive a three-point finite difference formula for the second derivative, f "(xi), using the three grid points at $x^{=} x_{i-1}, x_{i}$, and x_{i+1}. The grid is non-uniform with $x_{i+1}-x_{i}=2 h$ and $x_{i}-x_{i-1}=h$. See p. 261 in textbook for illustration.

Solution:
Consider the Taylor series expansion at $\mathrm{x}=\mathrm{x}_{\mathrm{i}+1}$ and $\mathrm{x}=\mathrm{x}_{\mathrm{i}-1}$,

$$
\begin{align*}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}+(4 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+(2 / 3) f^{\prime \prime \prime \prime}\left(x_{i}\right) h^{4}+\ldots \tag{I}\\
& f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h+f^{\prime \prime}\left(x_{i}\right) h^{2} / 2-f^{\prime \prime \prime}\left(x_{i}\right) h^{3} / 6+f^{\prime \prime \prime \prime}\left(x_{i}\right) h^{4} / 24-\ldots \tag{II}
\end{align*}
$$

Since we have only two Taylor series to manipulate, we have to use them to eliminate the terms with $\mathrm{f}^{\prime}(\mathrm{xi})$ in order to obtain a scheme for f " $\left(\mathrm{x}_{\mathrm{i}}\right)$. [We can foresee that the resulted finite difference formula will be of $\mathrm{O}(h)$ accuracy only. To obtain a formula with a higher order accuracy, more grid points will have to be used.] To proceed, we simply consider $1 \times(\mathrm{I})+2 \times(\mathrm{II})$ which leads to

$$
f\left(\mathrm{x}_{\mathrm{i}+1}\right)+2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)=3 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+4 \mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{h}^{2}+\mathrm{O}\left(\mathrm{~h}^{3}\right) .
$$

Dividing the above formula by $4 h^{2}$ leads to the final answer,

$$
f^{\prime \prime}\left(x_{i}\right)=\left(2 f\left(x_{i-1}\right)-3 f\left(x_{i}\right)+f\left(x_{i+1}\right)\right) / 4 h^{2}+O(h) .
$$

Example 2.

Derive a four-point finite difference scheme with $\mathrm{O}\left(\mathrm{h}^{3}\right)$ accuracy for the first derivative that expresses $f^{\prime}\left(x_{i}\right)$ as a combination of $f\left(x_{i-1}\right), f\left(x_{i}\right), f\left(x_{i+1}\right)$, and $f\left(x_{i+2}\right)$.

Solution:
Consider the Taylor series expansion at $\mathrm{x}=\mathrm{X}_{\mathrm{i}+1}, \mathrm{X}_{\mathrm{i}+2}$, and $\mathrm{x}_{\mathrm{i}-1}$,
$f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+f^{\prime \prime}\left(x_{i}\right) h^{2} / 2+f^{\prime \prime \prime}\left(x_{i}\right) h^{3} / 6+f^{\prime \prime \prime}\left(x_{i}\right) h^{4} / 24+f^{\prime \prime \prime \prime}\left(x_{i}\right) h^{5} / 120+\ldots$
$f\left(x_{i+2}\right)=f\left(x_{i}\right)+2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}+(4 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+(2 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{4}+(8 / 15) f^{\prime \prime " \prime}\left(x_{i}\right) h^{5}+\ldots$
$f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h+f^{\prime \prime}\left(x_{i}\right) h^{2} / 2-f^{\prime \prime \prime}\left(x_{i}\right) h^{3} / 6+f^{\prime \prime \prime \prime}\left(x_{i}\right) h^{4} / 24-f^{\prime \prime \prime \prime}\left(x_{i}\right) h^{5} / 120+\ldots$
Our goal is to combine formula (1)-(3) to eliminate all terms that involve $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)$, and $\mathrm{f}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)$ (marked by blue). This will lead to an expression of $f^{\prime}\left(x_{i}\right) h$ in terms of $f(x)$ at various grid points, and $f^{\prime \prime \prime}\left(x_{i}\right) h^{4}$ plus higher order terms. Dividing that expression by h should lead to our final formula with $O\left(\mathrm{~h}^{3}\right)$ error. To proceed, we can assume that the final formula is a linear combination of (1)-(3),

$$
\mathrm{A} \times(1)+\mathrm{B} \times(2)+\mathrm{C} \times(3),
$$

and solve the ratio of A : B : C (we can only solve for the ratios because there will be only two equations for three unknowns). Since the finite difference formula is not affected by multiplication or division by a constant, we can divide the above expression by A to obtain a simpler formula (we have cleaned up the formula so that the A and B in the following are the former B / A and C / A),

$$
\begin{equation*}
1 \times(1)+A \times(2)+B \times(3) \tag{I}
\end{equation*}
$$

The requirements that f " and f "' vanish lead to

$$
\begin{aligned}
& 1 / 2+2 A+(1 / 2) B=0 \\
& 1 / 6+(4 / 3) A-(1 / 6) B=0
\end{aligned}
$$

or

$$
\left(\begin{array}{cc}
4 & 1 \\
8 & -1
\end{array}\right)\binom{A}{B}=\binom{-1}{-1}
$$

which yields $A=-1 / 6, B=-1 / 3$. Using these numbers, our combination (I) becomes

$$
f\left(x_{i+1}\right)-(1 / 6) f\left(x_{i+2}\right)-(1 / 3) f\left(x_{i-1}\right)=(1 / 2) f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+O\left(h^{4}\right) .
$$

Dividing the above formula by 6 h yields the final result

$$
\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\left(-2 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}-1}\right)-3 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+6 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{f}\left(\mathrm{x}_{\mathrm{i}+2}\right)\right) / 6 \mathrm{~h}+\mathrm{O}\left(\mathrm{~h}^{3}\right) .
$$

Example 3. Derive the Five-point foreward difference scheme for the third derivative with $O\left(h^{2}\right)$ error in Table 6-1 (5th formula from bottom in p. 248).
(This is a slightly more complicated case. Our homework and exam problems will be considerably simpler.)
First, consider the Taylor series expansion at $\mathrm{x}=\mathrm{x}_{\mathrm{i}+1}, \mathrm{x}_{\mathrm{i}+2}, \mathrm{x}_{\mathrm{i}+3}$, and $\mathrm{x}_{\mathrm{i}+4}$,

$$
\begin{align*}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+f^{\prime \prime}\left(x_{i}\right) h^{2} / 2+f^{\prime \prime \prime}\left(x_{i}\right) h^{3} / 6+f^{\prime \prime \prime}\left(x_{i}\right) h^{4} / 24+f^{\prime \prime \prime \prime \prime}\left(x_{i}\right) h^{5} / 120+\ldots \tag{1}\\
& f\left(x_{i+2}\right)=f\left(x_{i}\right)+2 f^{\prime}\left(x_{i}\right) h+2 f^{\prime \prime}\left(x_{i}\right) h^{2}+(4 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+(2 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{4}+(8 / 15) f^{\prime \prime \prime \prime \prime}\left(x_{i}\right) h^{5}+\ldots \tag{2}\\
& f\left(x_{i}+3\right)=f\left(x_{i}\right)+3 f^{\prime}\left(x_{i}\right) h+(9 / 2) f^{\prime \prime}\left(x_{i}\right) h^{2}+(9 / 2) f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+(27 / 8) f^{\prime \prime \prime}\left(x_{i}\right) h^{4}+(81 / 40) f^{\prime \prime \prime \prime}\left(x_{i}\right) h^{5}+\ldots \tag{3}\\
& f\left(x_{i+4}\right)=f\left(x_{i}\right)+4 f^{\prime}\left(x_{i}\right) h+8 f^{\prime \prime}\left(x_{i}\right) h^{2}+(32 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+(32 / 3) f^{\prime \prime \prime \prime}\left(x_{i}\right) h^{4}+(128 / 15) f^{\prime \prime \prime \prime \prime}\left(x_{i}\right) h^{5}+\ldots \tag{4}
\end{align*}
$$

Our goal is to combine formula (1)-(4) to eliminate all terms that involve $\mathrm{f}^{\prime}, \mathrm{f}^{\prime \prime}$, and $\mathrm{f}^{\prime \prime \prime \prime}$ (marked in blue). This will lead to an expression of $f^{\prime \prime \prime} h^{3}$ in terms of $f(x)$ at various grid points and $f^{\prime \prime \prime \prime} h^{5}$ plus higher order terms. Dividing that expression by h^{3} yields our final formula that has $O\left(h^{2}\right)$ error. To proceed, we can assume that the final formula is a linear combination of (1)-(4),

$$
\begin{equation*}
A \times(1)+B \times(2)+C \times(3)+1 \times(4) \tag{I}
\end{equation*}
$$

See explanation in Example 2 on why we can assign "1" as the coefficient for formula (4). We now have three unknowns and three equations

$$
\begin{aligned}
& A+2 B+3 C+4=0 \\
& A / 2+2 B+(9 / 2) C+8=0 \\
& A / 24+(2 / 3) B+(27 / 8) C+32 / 3=0
\end{aligned}
$$

or,

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 / 2 & 2 & 9 / 2 \\
1 / 24 & 2 / 3 & 27 / 8
\end{array}\right)\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)=\left(\begin{array}{c}
-4 \\
-8 \\
-32 / 3
\end{array}\right)
$$

Solving it, we have $A=-6, B=8$, and $C=-14 / 3$. Using these numbers, our combination (I) becomes

$$
-6 f\left(x_{i+1}\right)+8 f\left(x_{i+2}\right)-(14 / 3) f\left(x_{i+3}\right)+f\left(x_{i+4}\right)=-(5 / 3) f\left(x_{i}\right)-(2 / 3) f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+O\left(h^{5}\right) .
$$

Dividing the formula by $-(2 / 3) h^{3}$ leads to the final formula in table 6-1,

$$
\mathrm{f}^{\prime \prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\left(-5 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)+18 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+1}\right)-24 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+2}\right)+14 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+3}\right)-3 \mathrm{f}\left(\mathrm{x}_{\mathrm{i}+4}\right)\right) / 2 \mathrm{~h}^{3}+O\left(\mathrm{~h}^{2}\right) .
$$

(Notes prepared by HPH, Oct 2009)

