MAE/MSE 502, Fall 2019 Homework \# 4

Hard copy of report is due 6:00 PM on the due date. The report should include a statement on collaboration, and computer code(s) used for the assignment. See the cover page of Homework \#1 for the rules on collaboration.

For ALL problems in this homework, we expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real numbers and functions.

Prob 1 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE,
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\pi^{2} u+t \sin (\pi x)+e^{-t} \sin (2 \pi x)$
with the boundary conditions:
$\begin{array}{lll}\text { (i) } u(0, t)=0 & \text { (ii) } u(1, t)=0 & \text { (iii) } u(x, 0)=\sin (\pi x) \text {. }\end{array}$
Prob 2 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u$
with the boundary conditions,
(i) $u(0, t)=1$
(ii) $u_{x}(\pi, t)=1$
(iii) $u(x, 0)=\cos (x)-\sin (x)+\sin (0.5 x)$.

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 0.5 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u+2019$
with the boundary conditions,
(i) $u_{x}(0, t)=1$
(ii) $u_{x}(0.5 \pi, t)=0$
(iii) $u(x, 0)=\sin (x)$.

Note that the first two boundary conditions are imposed on the derivative of u.
Prob 4 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+u+5+t \sin (x)$
with periodic boundary conditions in the x-direction, and the boundary conditions in the t-direction given as
(i) $u(x, 0)=1$
(ii) $u_{t}(x, 0)=\cos (3 x)$.

