MAE/MSE 502, Fall 2019 Homework \#5

Hard copy of report is due 6:00 PM on the due date. The report should include a statement on collaboration, and computer code(s) used for the assignment. See the cover page of Homework \#1 for the rules on collaboration.
For ALL problems in this homework, we expect a closed-form solution without any unevaluated integrals.

Prob 1 (2 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$(1+t) \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=t u$
with the boundary condition
$u(x, 0)=e^{-x^{2}}$.
Prob 2 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}+u \frac{\partial u}{\partial x}+u=2 t-x$
with the boundary condition,

$$
u(x, 0)=x
$$

Prob 3 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$(1+t) \frac{\partial u}{\partial t}+(2+2 x) \frac{\partial u}{\partial x}=(3+3 u)$
with the boundary condition
$u(x, 0)=e^{-x^{2}}$
Prob 4 (3 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+t \frac{\partial u}{\partial x}=3$
with the boundary condition,
$u(x, 0)=\left\{\begin{array}{c}-\frac{1}{x}, \text { if } x \leq-1 \\ 1, \text { if } x>-1\end{array}\right.$
Plot the solution as a function of x at $t=0.1$ and 0.3 , and the initial state, $u(x, 0)$. Please make the plot over the range of $-5 \leq x \leq 5$ and collect all 3 curves in one plot.

