MAE/MSE 502, Fall 2020, Homework \# 3

The report for this assignment is due (Arizona time) 11:59 PM, Tuesday, November 17th, at Canvas. The report should include a statement on collaboration, and computer code(s) used for the assignment. Please follow the rules for collaboration as given in the first page of the problem statement of Homework \#1.

Prob 1 (4 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, consider the PDE (in which U and K are constants)
$\frac{\partial u}{\partial t}=U \frac{\partial u}{\partial x}+K \frac{\partial^{2} u}{\partial x^{2}}$
with periodic boundary conditions in the x-direction (i.e., $u(0, t)=u(2 \pi, t), u_{x}(0, t)=u_{x}(2 \pi, t)$, and so on), and the boundary condition in the t-direction given as

$$
u(x, 0)=\exp \left[(1-\cos (x))^{2}\right]
$$

Solve the PDE by Fourier series expansion. Plot the solution $u(x, t)$ at $t=0.1$ for the three cases with
(i) $U=12, K=0$, (ii) $U=0, K=2.5$, and (iii) $U=12, K=2.5$. Also, plot the solution at $t=0$ (which is the same for all three cases). Please collect all four curves in one plot.

Prob 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial u}{\partial t}=4 t \frac{\partial^{2} u}{\partial x^{2}}+t \frac{\partial^{3} u}{\partial x^{3}}+(1+t) \frac{\partial^{4} u}{\partial x^{4}}-16 u$
with periodic boundary conditions in the x-direction, and the boundary condition in the t-direction given as

$$
u(x, 0)=1+\sin (2 x)
$$

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real numbers and functions. Expect a deduction if these requirements are not satisfied.

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}+8 u$
with periodic boundary conditions in the x-direction and the following boundary conditions in the t-direction,
(i) $u(x, 0)=\cos (3 x)$,
(ii) $u_{t}(x, 0)=\sin (x)$.

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real numbers and functions. Expect a deduction if these requirements are not satisfied.

