MAE/MSE 502, Fall 2020 Homework \#4

The report for this assignment is due (Arizona time) 11:59 PM, Sunday, November 29th, at Canvas. The report should include a statement on collaboration, and computer code(s) used for the assignment. Please follow the rules for collaboration as given in the first page of the problem statement of Homework \#1.

For all problems in this homework, we expect a closed-form exact solution with only a finite number of terms and without any unevaluated integral. The solution, $u(x, t)$, should be expressed explicitly in real functions of x and t and real numbers. Expect a deduction if these requirements are not satisfied.

Prob 1 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+t e^{-4 \pi^{2} t} \cos (2 \pi x)+\sin (t)$
with the boundary conditions
(i) $u_{x}(0, t)=0$
(ii) $u_{x}(1, t)=0$
(iii) $u(x, 0)=\cos (2 \pi x)$.

Prob 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\cos (x)$
with the boundary conditions,
(i) $u(0, t)=0$
(ii) $u(\pi, t)=2$
(iii) $u(x, 0)=1-\cos (x)+\sin (x)$

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}+\sin (x) \sin (t)+\cos (2 x)$
with periodic boundary conditions in x-direction, and the boundary conditions in t-direction given as
(i) $u(x, 0)=\cos (x)$

Prob 4 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+9 u+9+t \sin (3 x)$
with periodic boundary conditions in the x-direction, and the boundary conditions in the t-direction given as
(i) $u(x, 0)=0 \quad$ (ii) $u_{t}(x, 0)=1$

