Please upload the report as a single pdf or doc/docx file to Canvas. The report should include a statement on collaboration. See the cover page of Homework \#1 for the rules on collaboration.

For ALL problems in this homework, we expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real numbers and functions.

Prob 1 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+t e^{-\pi^{2} t} \cos (\pi x)+100 e^{-t}$
with the boundary conditions
(i) $u_{x}(0, t)=0$
(ii) $u_{x}(1, t)=0$
(iii) $u(x, 0)=\cos (\pi x)$.

Prob 2 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+4 u$
with the boundary conditions,
(i) $u_{x}(0, t)=0$
(ii) $u(\pi, t)=1$
(iii) $u(x, 0)=\cos (2 x)+\cos (0.5 x)$

Prob 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+0.25 u+2020$
with the boundary conditions,
(i) $u_{x}(0, t)=0$
(ii) $u_{x}(\pi, t)=-1$
(iii) $u(x, 0)=2 \cos (0.5 x)$.

Note that the first two boundary conditions are imposed on the derivative of u.
Prob 4 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+4 u+8+t \sin (2 x)$
with periodic boundary conditions in the x-direction, and the boundary conditions in the t-direction given as
(i) $u(x, 0)=1$ (ii) $u_{t}(x, 0)=\cos (x)$

