MAE/MSE 502, Spring 2020 Homework \#5

Please upload the report as a single pdf or doc/docx file to Canvas. The report should include a statement on collaboration. See the cover page of Homework \#1 for the rules on collaboration.
For Prob 2-6 in this homework, we expect a closed-form solution without any unevaluated integrals. The solution, $u(x, t)$, must be written explicitly as a function of x and t.

Prob 1 (1 point)
For $u(x, y)$ defined on the square domain of $0 \leq x \leq 1$ and $0 \leq y \leq 1$, consider the system of Poisson equation (where the "source term" Q is a given function of x and y),
$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=Q$,
with the boundary conditions (u_{x} and u_{y} denote $\partial u / \partial x$ and $\partial u / \partial y$, respectively),
$\begin{array}{llll}\text { (i) } u_{x}(0, y)=0 & \text { (ii) } u_{x}(1, y)=0 & \text { (iii) } u_{y}(x, 0)=0 & \text { (iv) } u_{y}(x, 1)=2 \text {. }\end{array}$
Let $Q(x, y)=x^{2}+K y$ where K is a constant. For what value(s) of K may a solution (or solutions) exist for the system?

Prob 2 (1 point)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$(1+t) \frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=t u$
with the boundary condition
$u(x, 0)=e^{-x^{2}}$.
Prob 3 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=x$
with the boundary condition,
$u(x, 0)=\left\{\begin{array}{l}0, \text { if } x<1 \\ x-1, \text { if } x \geq 1\end{array}\right.$
What is the steady solution (as $t \rightarrow \infty$) for the system? Plot the solution, $u(x, t)$, as a function of x at $t=0.3$ and 0.7. In addition, superimpose the initial state, $u(x, 0)$, and the steady solution, $u_{\mathrm{s}}(x)$. The recommended range for plotting is $-1 \leq x \leq 3$. Please collect all four curves in a single plot.

Prob 4 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+t e^{u} \frac{\partial u}{\partial x}=e^{-u}$
with the boundary condition,
$u(x, 0)=\left\{\begin{array}{l}0, \text { if } x<1 \\ \ln (x), \text { if } x \geq 1\end{array}\right.$
$(\ln (x)$ is the natural logarithm of x.)
Plot the solution, $u(x, t)$, as a function of x at $t=0.2$ and 0.8 . In addition, superimpose the initial state, $u(x, 0)$. The recommended range for plotting is $-1 \leq x \leq 5$. Please collect all three curves in a single plot.

Prob 5 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}+(1+u) \frac{\partial u}{\partial x}=u$
with the boundary condition,
$u(x, 0)=\left\{\begin{array}{cl}0, & \text { if } x<0 \\ x^{2}, & \text { if } 0 \leq x \leq 1 \\ 1, & \text { if } x>1\end{array}\right.$
Plot the solution, $u(x, t)$, as a function of x at $t=0.2$ and 0.5 . In addition, superimpose the initial state, $u(x, 0)$. The recommended range for plotting is $-1 \leq x \leq 3$. Please collect all three curves in a single plot.

Prob 6 (2.5 points)
For $u(x, t)$ defined on the domain of $-\infty<x<\infty$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}=0$
with the boundary conditions,
(i) $u(x, 0)=1$
(ii) $u_{t}(x, 0)=x$.

