MAE/MSE 502, Spring 2020 Homework #5

Please upload the report as a single pdf or doc/docx file to Canvas. The report should include a statement on collaboration. See the cover page of Homework #1 for the rules on collaboration. For Prob 2-6 in this homework, we expect a closed-form solution without any unevaluated integrals. The solution, u(x, t), must be written explicitly as a function of x and t.

Prob 1 (1 point)

For u(x,y) defined on the square domain of $0 \le x \le 1$ and $0 \le y \le 1$, consider the system of *Poisson* equation (where the "source term" Q is a given function of x and y),

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = Q ,$$

with the boundary conditions $(u_x \text{ and } u_y \text{ denote } \partial u/\partial x \text{ and } \partial u/\partial y$, respectively),

(i) $u_x(0, y) = 0$ (ii) $u_x(1, y) = 0$ (iii) $u_y(x, 0) = 0$ (iv) $u_y(x, 1) = 2$.

Let $Q(x,y) = x^2 + K y$ where K is a constant. For what value(s) of K may a solution (or solutions) exist for the system?

Prob 2 (1 point) For u(x,t) defined on the domain of $-\infty < x < \infty$ and $t \ge 0$, solve the PDE

$$(1+t)\frac{\partial u}{\partial t} + x\frac{\partial u}{\partial x} = tu$$

with the boundary condition

$$u(x,0)=e^{-x^2}.$$

Prob 3 (2.5 points) For u(x,t) defined on the domain of $-\infty < x < \infty$ and $t \ge 0$, solve the PDE

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = x$$

with the boundary condition,

$$u(x,0) = \begin{cases} 0, \ if \ x < 1 \\ \\ x - 1, \ if \ x \ge 1 \end{cases}$$

What is the steady solution (as $t \to \infty$) for the system? Plot the solution, u(x, t), as a function of x at t = 0.3 and 0.7. In addition, superimpose the initial state, u(x, 0), and the steady solution, $u_s(x)$. The recommended range for plotting is $-1 \le x \le 3$. Please collect all four curves in a single plot.

Prob 4 (2.5 points) For u(x,t) defined on the domain of $-\infty < x < \infty$ and $t \ge 0$, solve the PDE

$$\frac{\partial u}{\partial t} + t e^u \frac{\partial u}{\partial x} = e^{-u}$$

with the boundary condition,

$$u(x,0) = \begin{cases} 0, & \text{if } x < 1\\\\ ln(x), & \text{if } x \ge 1 \end{cases}$$

(ln(x)) is the natural logarithm of x.)

Plot the solution, u(x, t), as a function of x at t = 0.2 and 0.8. In addition, superimpose the initial state, u(x, 0). The recommended range for plotting is $-1 \le x \le 5$. Please collect all three curves in a single plot.

Prob 5 (2.5 points) For u(x,t) defined on the domain of $-\infty < x < \infty$ and $t \ge 0$, solve the PDE

$$\frac{\partial u}{\partial t} + (1+u) \ \frac{\partial u}{\partial x} = u$$

with the boundary condition,

$$u(x,0) = \begin{cases} 0, & \text{if } x < 0\\ x^2, & \text{if } 0 \le x \le 1\\ 1, & \text{if } x > 1 \end{cases}$$

Plot the solution, u(x, t), as a function of x at t = 0.2 and 0.5. In addition, superimpose the initial state, u(x, 0). The recommended range for plotting is $-1 \le x \le 3$. Please collect all three curves in a single plot.

Prob 6 (2.5 points) For u(x,t) defined on the domain of $-\infty < x < \infty$ and $t \ge 0$, solve the PDE

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0$$

with the boundary conditions,

(i) u(x, 0) = 1

(ii) $u_t(x, 0) = x$.