MAE/MSE 502, Fall 2021 Homework \#4

Please follow the rules on collaboration as given in the document for Homework \#1. Your work should include a statement of collaboration.

For all problems in this homework, we expect a closed-form exact solution with only a finite number of terms and without any unevaluated integral. The solution, $u(x, t)$, should be expressed explicitly in real functions of x and t and real numbers. Expect a deduction if these requirements are not satisfied.

Problem 1 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+t^{2} e^{-t} \cos (x)+\cos (t)+1$
with the boundary conditions
(i) $u_{x}(0, t)=0$
(ii) $u_{x}(\pi, t)=0$
(iii) $u(x, 0)=\cos (x)$.

Problem 2 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+2 \sin (x)$
with the boundary conditions,
(i) $u(0, t)=1$
(ii) $u_{x}(\pi, t)=-2$
(iii) $u(x, 0)=1+2 \sin (x)+\sin (x / 2)$

Problem 3 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}+\cos (x) \cos (t)$
with periodic boundary conditions in x-direction, and the boundary condition in t-direction given as
(i) $u(x, 0)=\sin (x)+\sin (3 x)$

Problem 4 (2.5 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}=\pi^{2} \sin (\pi x)$
with the boundary conditions
(i) $u(0, t)=0$
(ii) $u(1, t)=0$
(iii) $u(x, 0)=\sin (\pi x)$
(iv) $u_{t}(x, 0)=\sin (\pi x)$

