MAE/MSE 502, Spring 2021, Homework \#3 (12 points)

See Homework \#1 for rules on collaboration.
Problem 1 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, consider the 1 -D Wave equation,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$,
with the boundary conditions,
(i) $u(0, t)=0, \quad$ (ii) $u(1, t)=0$, (iii) $u(x, 0)=P(x), \quad$ (iv) $u_{t}(x, 0)=0$.
(a) Solve the system with $\mathrm{P}(x)$ given as

$$
\begin{array}{rlrl}
P(x) & =3 x & , & \text { if } 0 \leq x \leq 0.25 \\
& =1-x & , \text { if } 0.25<x \leq 1,
\end{array}
$$

and plot the solution as a function of x at $t=0,0.3,0.5,0.7,1.0$, and 1.8. Please collect all 6 curves in one plot.
(b) Solve the system with $P(x)$ given as (this emulates a "wave packet")
$P(x)=\sum_{n=30}^{50} \exp \left[-\left(\frac{n-40}{4}\right)^{2}\right] \sin (n \pi x)$,
and plot the solution as a function of x at $t=0,0.5,1.0$, and 1.5 . For this part, it is recommended that the four curves be plotted separately, for example arranged in 4 panels using "subplot" in Matlab.

Problem 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, consider the PDE (in which U, K, and B are constants)
$\frac{\partial u}{\partial t}=U \frac{\partial u}{\partial x}+K \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{3} u}{\partial x^{3}}$,
with periodic boundary conditions in the x-direction (i.e., $u(0, t)=u(2 \pi, t), u_{x}(0, t)=u_{x}(2 \pi, t)$, and so on), and the boundary condition in the t-direction given as
$u(x, 0)=\frac{(1-\cos (x))^{10}}{1024}$.
Solve the PDE by Fourier series expansion. Plot the solution $u(x, t)$ at $t=0.1$ for the three cases with (i) $U=10, K=0, B=0$ (ii) $U=10, K=2.5, B=0$, and (iii) $U=0, K=0, B=0.25$. Also, plot the solution at $t=0$ (which is the same for all three cases). Please collect all four curves in one plot.

Problem 3 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$(1+t) \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}+4 u$
with periodic boundary conditions in the x-direction, and the boundary condition in the t-direction given as

$$
u(x, 0)=1+\sin (2 x)+\cos (2 x)
$$

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real functions.

Problem 4 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial u}{\partial t}=t \frac{\partial^{2} u}{\partial x^{2}}+t \frac{\partial^{3} u}{\partial x^{3}}+(1+t) \frac{\partial^{4} u}{\partial x^{4}}-u$
with periodic boundary conditions in the x-direction, and the boundary condition in the t-direction given as $u(x, 0)=1+\sin (x)$.

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real functions.

Problem 5 (2 points) For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial t}+4 u$
with periodic boundary conditions in the x-direction, and the boundary conditions at $t=0$ given as
(i) $u(x, 0)=1$
(ii) $u_{t}(x, 0)=\cos (2 x)$.

We expect a closed-form solution which consists of only a finite number of terms and without any unevaluated integrals. The solution should be expressed in real functions.

