MAE/MSE 502, Spring 2021, Homework \#4

See Homework \#1 for rules on collaboration.
Problem 1 (2 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 1$ and $t \geq 0$, solve the PDE,
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-\pi^{2} u+e^{-\pi^{2} t}+\cos (\pi x) e^{-2 \pi^{2} t}$
with the boundary conditions,
(i) $u_{x}(0, t)=0$, (ii) $u_{x}(1, t)=0$, (iii) $u(x, 0)=1+\cos (\pi x)$

We expect a closed form solution that contains only a finite number of terms and with no unevaluated integrals.
Problem 2 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\cos (x)$
with the boundary conditions,
(i) $u(0, t)=0$
(ii) $u(2 \pi, t)=2 \pi$
(iii) $u(x, 0)=\sin (0.5 x)+\cos (x)+x-1$

We expect a closed form solution that contains only a finite number of terms and with no unevaluated integrals.
Problem 3 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE,
$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{4} u}{\partial x^{4}}+t+\cos (2 x)+\sin (x) \cos (t)$
with periodic boundary conditions in x-direction, and the boundary conditions in the t-direction given as
$\begin{array}{ll}\text { (i) } u(x, 0)=0 & \text { (ii) } u_{t}(x, 0)=0\end{array}$
We expect a closed form solution that contains only a finite number of terms and with no unevaluated integrals.
Problem 4 (3 points)
For $u(x, t)$ defined on the domain of $0 \leq x \leq 2 \pi$ and $t \geq 0$, solve the PDE
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+u$
with the boundary conditions,
(i) $u_{x}(0, t)=1$
(ii) $u(2 \pi, t)=2$
(iii) $u(x, 0)=2 \cos (x)+\sin (x)+\cos (0.25 x) \quad\left(u_{x}\right.$ is $\left.\partial u / \partial x\right)$.

We expect a closed form solution that contains only a finite number of terms and with no unevaluated integrals.

